浏览全部资源
扫码关注微信
浙江大学 光电科学与工程学院 现代光学仪器国家重点实验室,杭州 浙江 310027
[ "胡逸凡(1997-),男,浙江宁海人,硕士研究生,2020年于南京航空航天大学获得学士学位,主要从事原子力显微镜技术及系统的研究。E-mail: 22030057@zju.edu.cn" ]
[ "章海军(1965-),男,浙江新昌人,教授,博士生导师,1993年于浙江大学获得博士学位,主要从事光学工程及原子力显微镜技术的研究。E-mail: zhanghj@zju.edu.cn" ]
收稿日期:2022-05-09,
修回日期:2022-06-07,
纸质出版日期:2022-09-10
移动端阅览
胡逸凡,章海军,倪凯佳.三角放大型压电陶瓷微纳米驱动机构[J].光学精密工程,2022,30(17):2094-2099.
HU Yifan,ZHANG Haijun,NI Kaijia.Mini-piezo-element drive microactuator based on triangular amplification[J].Optics and Precision Engineering,2022,30(17):2094-2099.
胡逸凡,章海军,倪凯佳.三角放大型压电陶瓷微纳米驱动机构[J].光学精密工程,2022,30(17):2094-2099. DOI: 10.37188/OPE.20223000.0223.
HU Yifan,ZHANG Haijun,NI Kaijia.Mini-piezo-element drive microactuator based on triangular amplification[J].Optics and Precision Engineering,2022,30(17):2094-2099. DOI: 10.37188/OPE.20223000.0223.
提出了一种基于小压电陶瓷条的三角放大型微纳米驱动机构。该机构由两个1.6 mm×1.6 mm×5.0 mm的小压电陶瓷条、三角对称型伸缩臂、大顶角柔性铰链(扫描端)及基座组成,由小压电陶瓷条驱动伸缩臂运动,基于大顶角三角形的放大原理,获得高放大倍率的扫描端输出位移。理论分析与有限元仿真表明,当三角对称型伸缩臂与底边的夹角为6°时,扫描端的位移量与小压电陶瓷条的伸缩量之比可达9倍左右;当驱动电压为80 V时,相比于小压电陶瓷条的伸缩量3.2 μm,扫描端的位移量理论值可达29.5 μm。显微运动测量实验表明,在相同驱动电压下,扫描端的实际位移量达到26.6 μm,实际位移放大倍数达到8.3倍。将该机构作为原子力显微镜的慢轴扫描器,成功实现了基于小压电陶瓷条的宽范围原子力显微镜扫描成像(4 μm×26 μm),具有良好的分辨率、对比度和线性度。该机构具有原理新颖、结构简洁、成本低廉、性能优越等特点,可望在光学、精密机械及微纳米技术领域获得广泛的应用。
This paper proposes a mini-piezo-element drive microactuator based on triangular amplification. The actuator is composed of two 1.6 mm×1.6 mm×5.0 mm mini piezo-elements, two triangular waists serving as symmetrical stretch arms, and one large apex flexure hinge (scanning end). When both stretch arms are driven by the mini-piezo-elements an amplified output displacement on the scanning end can be obtained through triangular amplification. Theoretical analysis and finite element simulation show that when the angle between each triangular stretch arm and the bottom edge is 6°, the ratio of the displacement at the scanning end to the expansion at the mini-piezo-element’s approaches 9∶1. Furthermore, the simulation results show that compared with the displacement of the mini-piezo-element of 3.2 μm, under 80 V driving voltage, the displacement of the scanning end can be enlarged to 29.5 μm. Micro-motion measurement experiments were conducted under the same driving voltage, and the displacement of the scanning end was measured as 26.6 μm, with an actual amplification ratio of 8.3. The proposed mini-piezo-element drive microactuator was successfully employed as the slow axis scanner of an atomic force microscope (AFM) and for wide-range AFM imaging (4 μm×26 μm). In conclusion, the proposed microactuator is a novel, simple structure that yields good results at low cost and is expected to be widely applied in optics, precision machinery, and micro/nano technology.
BINNIG G , QUATE C F , GERBER C . Atomic force microscope [J]. Physical Review Letters , 1986 , 56 ( 9 ): 930 - 933 . doi: 10.1103/physrevlett.56.930 http://dx.doi.org/10.1103/physrevlett.56.930
章海军 , 陈佳骏 , 王英达 , 等 . 无线控制式原子力显微镜系统 [J]. 光学 精密工程 , 2018 , 26 ( 9 ): 2206 - 2212 . doi: 10.3788/ope.20182609.2205 http://dx.doi.org/10.3788/ope.20182609.2205
ZHANG H J , CHEN J J , WANG Y D , et al . Development of wirelessly controlled atomic force microscope [J]. Opt. Precision Eng. , 2018 , 26 ( 9 ): 2206 - 2212 . (in Chinese) . doi: 10.3788/ope.20182609.2205 http://dx.doi.org/10.3788/ope.20182609.2205
HABIBULLAH H . 30 Years of atomic force microscopy: creep, hysteresis, cross-coupling, and vibration problems of piezoelectric tube scanners [J]. Measurement , 2020 , 159 : 107776 . doi: 10.1016/j.measurement.2020.107776 http://dx.doi.org/10.1016/j.measurement.2020.107776
XU W , KING T . Flexure hinges for piezoactuator displacement amplifiers: flexibility, accuracy, and stress considerations [J]. Precision Engineering , 1996 , 19 ( 1 ): 4 - 10 . doi: 10.1016/0141-6359(95)00056-9 http://dx.doi.org/10.1016/0141-6359(95)00056-9
CUI F N , LI Y M , QIAN J N . Development of a 3-DOF flexible micro-motion platform based on a new compound lever amplification mechanism [J]. Micromachines , 2021 , 12 ( 6 ): 686 . doi: 10.3390/mi12060686 http://dx.doi.org/10.3390/mi12060686
黄卫清 , 史小庆 , 王寅 . 菱形压电微位移放大机构的设计 [J]. 光学 精密工程 , 2015 , 23 ( 3 ): 803 - 809 . doi: 10.3788/OPE.20152303.0803 http://dx.doi.org/10.3788/OPE.20152303.0803
HUANG W Q , SHI X Q , WANG Y . Design of diamond piezoelectric micro displacement amplification mechanism [J]. Opt. Precision Eng. , 2015 , 23 ( 3 ): 803 - 809 . (in Chinese) . doi: 10.3788/OPE.20152303.0803 http://dx.doi.org/10.3788/OPE.20152303.0803
MEIER T , FÖRSTE A , TAVASSOLIZADEH A , et al . A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans [J]. Beilstein Journal of Nanotechnology , 2015 , 6 : 451 - 461 . doi: 10.3762/bjnano.6.46 http://dx.doi.org/10.3762/bjnano.6.46
IQBAL S , MALIK A . A review on MEMS based micro displacement amplification mechanisms [J]. Sensors and Actuators A: Physical , 2019 , 300 : 111666 . doi: 10.1016/j.sna.2019.111666 http://dx.doi.org/10.1016/j.sna.2019.111666
李玄 , 周双武 , 丁冰晓 , 等 . 基于新型二级杠杆机构微定位平台的设计与分析 [J]. 机械设计 , 2021 , 38 ( 2 ): 102 - 107 .
LI X , ZHOU SH W , DING B X , et al . Design and analysis of the micro-positioning platform based on the novel two-level lever amplification mechanism [J]. Journal of Machine Design , 2021 , 38 ( 2 ): 102 - 107 . (in Chinese)
闫鹏 , 李金银 . 压电陶瓷驱动的长行程快刀伺服机构设计 [J]. 光学 精密工程 , 2020 , 28 ( 2 ): 390 - 397 .
YAN P , LI J Y . Design of piezo-actuated long-stroke fast tool servo mechanism [J]. Opt. Precision Eng. , 2020 , 28 ( 2 ): 390 - 397 . (in Chinese)
GHAFARIAN M , SHIRINZADEH B , AL-JODAH A , et al . FEA-based optimization of a complete structure of a monolithic z/tip/tilt micromanipulator [J]. Journal of Micro-Bio Robotics , 2020 , 16 ( 1 ): 93 - 110 . doi: 10.1007/s12213-020-00133-4 http://dx.doi.org/10.1007/s12213-020-00133-4
MARCHESI A , UMEDA K , KOMEKAWA T , et al . An ultra-wide scanner for large-area high-speed atomic force microscopy with megapixel resolution [J]. Scientific Reports , 2021 , 11 : 13003 . doi: 10.1038/s41598-021-92365-y http://dx.doi.org/10.1038/s41598-021-92365-y
TIAN Y L , MA Y , WANG F J , et al . A novel XYZ micro/nano positioner with an amplifier based on L-shape levers and half-bridge structure [J]. Sensors and Actuators A: Physical , 2020 , 302 : 111777 . doi: 10.1016/j.sna.2019.111777 http://dx.doi.org/10.1016/j.sna.2019.111777
CHOI K B , LEE J , KIM G , et al . Design and analysis of a flexure-based parallel XY stage driven by differential piezo forces [J]. International Journal of Precision Engineering and Manufacturing , 2020 , 21 ( 8 ): 1547 - 1561 . doi: 10.1007/s12541-020-00358-0 http://dx.doi.org/10.1007/s12541-020-00358-0
张子尧 . 显微目标的微纳米运动测量方法及技术研究 [D]. 杭州 : 浙江大学 , 2021 .
ZHANG Z Y . Micro-motion Measurement Method and Technique of Microscopic Objects [D]. Hangzhou : Zhejiang University , 2021 . (in Chinese)
0
浏览量
997
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构