
浏览全部资源
扫码关注微信
1.烟台大学 物理与电子信息学院,山东 烟台 264005
2.天津津航技术物理研究所,天津 300308
[ "苗传开(1997-),男,山东临沂人,硕士研究生,2020年于烟台大学获得学士学位,主要从事图像处理、机器视觉等方面的研究。Email:1753184809@qq.com" ]
[ "娄树理(1976-),男,山东蒙阴人,博士,副教授,硕士生导师,主要从事光电探测、光电目标识别、机器视觉等方面的研究。Email:shulilou@sina.com" ]
收稿日期:2022-05-09,
修回日期:2022-06-17,
纸质出版日期:2022-10-25
移动端阅览
苗传开,娄树理,李婷等.基于弱监督学习的多标签红外图像分类算法[J].光学精密工程,2022,30(20):2501-2509.
MIAO Chuankai,LOU Shuli,LI Ting,et al.Multi-label infrared image classification algorithm based on weakly supervised learning[J].Optics and Precision Engineering,2022,30(20):2501-2509.
苗传开,娄树理,李婷等.基于弱监督学习的多标签红外图像分类算法[J].光学精密工程,2022,30(20):2501-2509. DOI: 10.37188/OPE.20223020.2501.
MIAO Chuankai,LOU Shuli,LI Ting,et al.Multi-label infrared image classification algorithm based on weakly supervised learning[J].Optics and Precision Engineering,2022,30(20):2501-2509. DOI: 10.37188/OPE.20223020.2501.
红外图像的场景感知与分类分级是图像识别的一项关键技术,对于红外侦察与制导具有重要意义。为有效解决红外图像多场景多目标的场景感知及分类分级的问题,本文提出一种基于弱监督学习的多标签红外图像分类算法。将多标签图像分类技术应用于红外前视图像领域,针对多场景的红外图像进行弱监督的图像级标注,使用主干网络Resnet-50对图像进行特征提取;引入类特定的空间残差注意力模块CSRA以捕捉图像中不同类别所占据的不同空间区域,提高类别特征的表达性能;引入先进的损失函数ASL以解决多标签分类中正负标签数量失衡问题,使训练过程中更多地关注阳性样本,提高检测准确率。试验结果表明,本文算法对于多场景多目标的红外图像分类具有更好的适应性和准确率,算法检测率可达90%以上,能够很好地完成红外图像分类分级任务。
Scene perception and classification of FLIR images is a key technology in target recognition and of great significance to infrared reconnaissance and guidance. To resolve the problem of scene perception and classification of FLIR images, this study proposes a multi-label infrared image classification algorithm based on weakly supervised learning. First, a multi-label image classification technique is applied to FLIR images, and the images of multiple scenes are annotated using weakly supervised techniques. Infrared image features are extracted using the ResNet-50 network with a residual structure. Second, a CSRA module is introduced to capture the different spatial regions occupied by different classes. The CSRA module can improve the feature expression performance and realize the inference calculation of topological relationships between multiple labels. Finally, the advanced loss function ASL is introduced to solve the imbalance of the number of positive and negative labels in multi-label classification. The advanced loss limits the contribution of negative samples to the loss function and focuses attention on the positive samples during training. An experiment shows that the algorithm has good adaptability and accuracy, and the accuracy can exceed 90%. The algorithm can be used to perform multi-label classification with high accuracy and adaptability.
WU J X , YANG H . Linear regression-based efficient SVM learning for large-scale classification [J]. IEEE Transactions on Neural Networks and Learning Systems , 2015 , 26 ( 10 ): 2357 - 2369 . doi: 10.1109/tnnls.2014.2382123 http://dx.doi.org/10.1109/tnnls.2014.2382123
林春焕 . 弱监督学习下的多标签图像分类 [D]. 西安 : 西安电子科技大学 , 2019 .
LIN C H . Multi-label Image Classification Under Weakly Supervised Learning [D]. Xi'an : Xidian University , 2019 . (in Chinese)
SERMANET P , EIGEN D , ZHANG X , et al . Overfeat: Integrated recognition, localization and detection using convolutional networks . arXiv preprint arXiv: 1312.6229 , 2013 .
WEI Y C , XIA W , LIN M , et al . HCP: a flexible CNN framework for multi-label image classification [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2016 , 38 ( 9 ): 1901 - 1907 . doi: 10.1109/tpami.2015.2491929 http://dx.doi.org/10.1109/tpami.2015.2491929
WANG J , YANG Y , MAO J H , et al . CNN-RNN: a unified framework for multi-label image classification [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition . Las Vegas, NV, USA . IEEE , 2016 : 2285 - 2294 . doi: 10.1109/cvpr.2016.251 http://dx.doi.org/10.1109/cvpr.2016.251
CHEN T S , XU M X , HUI X L , et al . Learning semantic-specific graph representation for multi-label image recognition [C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul , Korea (South) . IEEE , 2019 : 522 - 531 . doi: 10.1109/iccv.2019.00061 http://dx.doi.org/10.1109/iccv.2019.00061
LANCHANTIN J , WANG T L , ORDONEZ V , et al . General multi-label image classification with transformers [C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville , TN , USA . IEEE , 2021 : 16473 - 16483 . doi: 10.1109/cvpr46437.2021.01621 http://dx.doi.org/10.1109/cvpr46437.2021.01621
CHENG X , LIN H Z , WU X Y , et al . MLTR: multi-label classification with transformer [C]. 2022 IEEE International Conference on Multimedia and Expo. Taipei , Taiwan, China . IEEE , 2022 : 1 - 6 . doi: 10.1109/icme52920.2022.9860016 http://dx.doi.org/10.1109/icme52920.2022.9860016
LIU S , ZHANG L , YANG X , et al . Query2Label: A Simple Transformer Way to Multi-Label Classification [J]. arXiv preprint arXiv: 2107.10834 , 2021 .
HE K M , ZHANG X Y , REN S Q , et al . Deep residual learning for image recognition [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition . Las Vegas, NV, USA . IEEE , 2016 : 770 - 778 . doi: 10.1109/cvpr.2016.90 http://dx.doi.org/10.1109/cvpr.2016.90
ZHU K , WU J X . Residual attention: a simple but effective method for multi-label recognition [C]. 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal , QC, Canada . IEEE , 2021 : 184 - 193 . doi: 10.1109/iccv48922.2021.00025 http://dx.doi.org/10.1109/iccv48922.2021.00025
CUI Y , JIA M L , LIN T Y , et al . Class-balanced loss based on effective number of samples [C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach , CA, USA . IEEE , 2019 : 9260 - 9269 . doi: 10.1109/cvpr.2019.00949 http://dx.doi.org/10.1109/cvpr.2019.00949
WU T , HUANG Q Q , LIU Z W , et al . Distribution-balanced Loss for Multi-label Classification in Long-tailed Datasets [M]. Computer Vision – ECCV 2020 . Cham : Springer International Publishing , 2020 : 162 - 178 . doi: 10.1007/978-3-030-58548-8_10 http://dx.doi.org/10.1007/978-3-030-58548-8_10
RIDNIK T , BEN-BARUCH E , ZAMIR N , et al . Asymmetric loss for multi-label classification [C]. 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal , QC, Canada . IEEE , 2021 : 82 - 91 . doi: 10.1109/iccv48922.2021.00015 http://dx.doi.org/10.1109/iccv48922.2021.00015
YE J , HE J J , PENG X J , et al . Attention-driven Dynamic Graph Convolutional Network for Multi-label Image Recognition [M]. Computer Vision – ECCV 2020 . Cham : Springer International Publishing , 2020 : 649 - 665 . doi: 10.1007/978-3-030-58589-1_39 http://dx.doi.org/10.1007/978-3-030-58589-1_39
YOU R C , GUO Z Y , CUI L , et al . Cross-modality attention with semantic graph embedding for multi-label classification [J]. Proceedings of the AAAI Conference on Artificial Intelligence , 2020 , 34 ( 7 ): 12709 - 12716 . doi: 10.1609/aaai.v34i07.6964 http://dx.doi.org/10.1609/aaai.v34i07.6964
LIN T Y , GOYAL P , GIRSHICK R , et al . Focal loss for dense object detection [C]. 2017 IEEE International Conference on Computer Vision . Venice, Italy . IEEE , 2017 : 2999 - 3007 . doi: 10.1109/iccv.2017.324 http://dx.doi.org/10.1109/iccv.2017.324
0
浏览量
669
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621