浏览全部资源
扫码关注微信
中南大学 轻合金研究院,湖南 长沙 410083
[ "杨 义(1998-),男,湖南岳阳人,硕士研究生,2016年于湖南城市学院获得学士学位,主要从事机器视觉和图像去噪等方面的研究。E-mail: yangyi2ff@qq.com" ]
[ "李毅波(1981-),男,湖南湘潭人,教授、博士生导师。2006年、2013年于中南大学分别获得硕士、博士学位,主要从事机械系统与制造工艺过程的数字孪生、轻质混杂材料-结构的设计制造一体化、基于机器视觉的板形与表面缺陷检测方向的研究。E-mail: yibo.li@csu.edu.cn" ]
收稿日期:2022-02-21,
修回日期:2022-04-08,
纸质出版日期:2022-10-25
移动端阅览
杨义,李毅波,马逐曦等.基于BM3D的钢板表面图像自适应去噪方法[J].光学精密工程,2022,30(20):2510-2522.
YANG Yi,LI Yibo,MA Zhuxi,et al.Adaptive denoising method of steel plate surface image based on BM3D[J].Optics and Precision Engineering,2022,30(20):2510-2522.
杨义,李毅波,马逐曦等.基于BM3D的钢板表面图像自适应去噪方法[J].光学精密工程,2022,30(20):2510-2522. DOI: 10.37188/OPE.20223020.2510.
YANG Yi,LI Yibo,MA Zhuxi,et al.Adaptive denoising method of steel plate surface image based on BM3D[J].Optics and Precision Engineering,2022,30(20):2510-2522. DOI: 10.37188/OPE.20223020.2510.
为了解决传统BM3D算法的距离阈值选取无法自适应去除钢板图像中的噪声以改善图像质量的问题,提出了一种基于噪声估计和阈值函数的自适应BM3D去噪算法(TFBM3D)。先采用网格搜索法得到不同钢板缺陷图像在不同噪声强度下基础估计和最终估计的最佳阈值,再通过对比不同函数的拟合效果,最终确定基础估计的二次曲线阈值函数和最终估计的四次多项式阈值函数,并将噪声估计作为新算法前处理阶段。最后将新BM3D算法、原BM3D算法以及一些其他最新的去噪算法进行比较,试验结果表明,该算法在复原缺陷图像边缘和细节纹理上效果显著,在噪声标准差为30的条件下各缺陷图片去噪效果的PSNR值在33 dB以上、SSIM值在0.85以上,且残余图像中残余的存留细节更少,本文算法优于其他算法。
An adaptive block-matching and 3D-filtering denoising (BM3D) algorithm based on noise estimation and a threshold function is proposed to solve the problem of the distance threshold selection of the traditional BM3D algorithm not being adaptive and to improve the image quality by removing noise in steel plate images. First, the grid search method is used to obtain different plate defect images under different noise-intensity-based estimations and the final estimate for the best threshold value. Subsequently, the different function fitting effects are compared, and the estimated quadratic curve threshold function and the final estimate of four polynomial threshold functions are determined. Moreover, noise estimation is performed for the new algorithm processing phase. Finally, the new BM3D algorithm is compared with the original BM3D algorithm and other latest denoising algorithms. Experiments show that the algorithm has excellent performance in restoring the edge and detail textures of defective images. Under noise with a standard deviation of 30, the peak signal-to-noise ratio and structural similarity value of the denoising effect of each defective image are above 33 dB and 0.85, respectively. Moreover, the residual details in the residual image are reduced and are better than those achieved by applying other algorithms.
XUE B , WU Z S . Key technologies of steel plate surface defect detection system based on artificial intelligence machine vision [J]. Wireless Communications and Mobile Computing , 2021 , 2021 : 5553470 . doi: 10.1155/2021/5553470 http://dx.doi.org/10.1155/2021/5553470
YANG Y , LI D R , HUANG X F . Research on image denoising algorithm based on non-local block matching [J]. International Journal of Information and Communication Technology , 2020 , 16 ( 3 ): 245 . doi: 10.1504/ijict.2020.106317 http://dx.doi.org/10.1504/ijict.2020.106317
SEKHAR B , REDDY P P , VENKATARAMANA S , et al . Image denoising using novel social grouping optimization algorithm with transform domain technique [J]. International Journal of Natural Computing Research , 2019 , 8 ( 4 ): 28 - 40 . doi: 10.4018/ijncr.2019100103 http://dx.doi.org/10.4018/ijncr.2019100103
BUADES A , COLL B , MOREL J M . A non-local algorithm for image denoising [C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition . San Diego, CA, USA . IEEE , 2015 : 60 - 65 .
HERNÁNDEZ-GUTIÉRREZ I V , GALLEGOS-FUNES F J , ROSALES-SILVA A J . Improved preclassification non local-means (IPNLM) for filtering of grayscale images degraded with additive white Gaussian noise [J]. EURASIP Journal on Image and Video Processing , 2018 , 2018( 1 ): 1 - 14 . doi: 10.1186/s13640-018-0346-y http://dx.doi.org/10.1186/s13640-018-0346-y
陆海青 , 葛洪伟 . 混合鲁棒权重和改进方法噪声的两级非局部均值去噪 [J]. 计算机工程与科学 , 2018 , 40 ( 7 ): 1227 - 1236 . doi: 10.3969/j.issn.1007-130X.2018.07.012 http://dx.doi.org/10.3969/j.issn.1007-130X.2018.07.012
LU H Q , GE H W . Two-stage non-local means denoising based on hybrid robust weight and improved method noise [J]. Computer Engineering & Science , 2018 , 40 ( 7 ): 1227 - 1236 . (in Chinese) . doi: 10.3969/j.issn.1007-130X.2018.07.012 http://dx.doi.org/10.3969/j.issn.1007-130X.2018.07.012
HUO F C , ZHANG W H , WANG Q , et al . Two-stage image denoising algorithm based on noise localization [J]. Multimedia Tools and Applications , 2021 , 80 ( 9 ): 14101 - 14122 . doi: 10.1007/s11042-020-10428-0 http://dx.doi.org/10.1007/s11042-020-10428-0
HUANG X , WOOLSEY G A . Image denoising using Wiener filtering and wavelet thresholding [C]. 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532). New York , NY, USA . IEEE , 2000 : 1759 - 1762 . doi: 10.1109/icme.2000.869531 http://dx.doi.org/10.1109/icme.2000.869531
ZHU H , WANG X M . Image denoising by wavelet transform based on new threshold [C]. Big Data Analytics for Cyber-Physical System in Smart City , 2021 : 208 - 213 . doi: 10.1007/978-981-33-4572-0_30 http://dx.doi.org/10.1007/978-981-33-4572-0_30
MALLAT S G , ZHANG Z F . Matching pursuits with time-frequency dictionaries [J]. IEEE Transactions on Signal Processing , 1993 , 41 ( 12 ): 3397 - 3415 . doi: 10.1109/78.258082 http://dx.doi.org/10.1109/78.258082
SAHOO S K , MAKUR A . Signal recovery from random measurements via extended orthogonal matching pursuit [J]. IEEE Transactions on Signal Processing , 2015 , 63 ( 10 ): 2572 - 2581 . doi: 10.1109/tsp.2015.2413384 http://dx.doi.org/10.1109/tsp.2015.2413384
AHARON M , ELAD M , BRUCKSTEIN A . K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation [J]. IEEE Transactions on Signal Processing , 2006 , 54 ( 11 ): 4311 - 4322 . doi: 10.1109/tsp.2006.881199 http://dx.doi.org/10.1109/tsp.2006.881199
DABOV K , FOI A , KATKOVNIK V , et al . Image denoising by sparse 3-D transform-domain collaborative filtering [J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society , 2007 , 16 ( 8 ): 2080 - 2095 . doi: 10.1109/tip.2007.901238 http://dx.doi.org/10.1109/tip.2007.901238
王燕 , 李晓燕 , 母秀清 , 等 . 一种基于BM3D的接触网图像自适应去噪新方法 [J]. 铁道学报 , 2016 , 38 ( 4 ): 59 - 65 . doi: 10.3969/j.issn.1001-8360.2016.04.009 http://dx.doi.org/10.3969/j.issn.1001-8360.2016.04.009
WANG Y , LI X Y , MU X Q , et al . A new adaptive denoising method based on BM3D for catenary image [J]. Journal of the China Railway Society , 2016 , 38 ( 4 ): 59 - 65 . (in Chinese) . doi: 10.3969/j.issn.1001-8360.2016.04.009 http://dx.doi.org/10.3969/j.issn.1001-8360.2016.04.009
冯象初 , 李晓晖 , 王卫卫 , 等 . 方向扩散方程修正BM3D图像去噪改进算法 [J]. 西安电子科技大学学报 , 2017 , 44 ( 5 ): 102 - 108 . doi: 10.3969/j.issn.1001-2400.2017.05.018 http://dx.doi.org/10.3969/j.issn.1001-2400.2017.05.018
FENG X C , LI X H , WANG W W , et al . Modified BM3Dalgorithm for image denoising using the directed diffusion equation [J]. Journal of Xidian University , 2017 , 44 ( 5 ): 102 - 108 . (in Chinese) . doi: 10.3969/j.issn.1001-2400.2017.05.018 http://dx.doi.org/10.3969/j.issn.1001-2400.2017.05.018
DAI L , ZHANG Y S , LI Y J . BM3D image denoising algorithm with adaptive distance hard-threshold [J]. International Journal of Signal Processing, Image Processing and Pattern Recognition , 2013 , 6 ( 6 ): 41 - 50 . doi: 10.14257/ijsip.2013.6.6.04 http://dx.doi.org/10.14257/ijsip.2013.6.6.04
CHENG W M , ZHU X , CHEN X , et al . Manhattan distance-based adaptive 3D transform-domain collaborative filtering for laser speckle imaging of blood flow [J]. IEEE Transactions on Medical Imaging , 2019 , 38 ( 7 ): 1726 - 1735 . doi: 10.1109/tmi.2019.2896007 http://dx.doi.org/10.1109/tmi.2019.2896007
FENG Q P , TAO S P , XU C , et al . BM3D-GT&AD: an improved BM3D denoising algorithm based on Gaussian threshold and angular distance [J]. IET Image Processing , 2020 , 14 ( 3 ): 431 - 441 . doi: 10.1049/iet-ipr.2019.0469 http://dx.doi.org/10.1049/iet-ipr.2019.0469
YAHYA A A , TAN J Q , SU B Y , et al . BM3D image denoising algorithm based on an adaptive filtering [J]. Multimedia Tools and Applications , 2020 , 79 ( 27/28 ): 20391 - 20427 . doi: 10.1007/s11042-020-08815-8 http://dx.doi.org/10.1007/s11042-020-08815-8
ABUBAKAR A , ZHAO X J , LI S T , et al . A block-matching and 3-D filtering algorithm for Gaussian noise in DoFP polarization images [J]. IEEE Sensors Journal , 2018 , 18 ( 18 ): 7429 - 7435 . doi: 10.1109/jsen.2018.2861087 http://dx.doi.org/10.1109/jsen.2018.2861087
LIU W , LIN W S . Additive white Gaussian noise level estimation in SVD domain for images [J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society , 2013 , 22 ( 3 ): 872 - 883 . doi: 10.1109/tip.2012.2219544 http://dx.doi.org/10.1109/tip.2012.2219544
0
浏览量
1023
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构