浏览全部资源
扫码关注微信
同济大学 物理科学与工程学院 精密光学工程技术研究所,先进微结构材料教育部重点实验室,上海市数字光学前沿科学研究基地,上海市全光谱高性能光学薄膜器件与 应用专业技术服务平台,上海 200092
[ "江 涛(1988-),男,博士,教授,博士生导师,2010年于华东师范大学获得学士学位,2015年于复旦大学获得博士学位,主要从事低维微纳结构的非线性光学及光电器件的性能表征与机制研究。E-mail: tjiang@tongji.edu.cn" ]
收稿日期:2022-07-13,
修回日期:2022-08-11,
纸质出版日期:2022-11-10
移动端阅览
江涛,黄迪,宋仁康等.二维材料非线性光学显微[J].光学精密工程,2022,30(21):2711-2736.
JIANG Tao,HUANG Di,SONG Renkang,et al.Nonlinear optical microscopy in two-dimensional materials[J].Optics and Precision Engineering,2022,30(21):2711-2736.
江涛,黄迪,宋仁康等.二维材料非线性光学显微[J].光学精密工程,2022,30(21):2711-2736. DOI: 10.37188/OPE.20223021.2711.
JIANG Tao,HUANG Di,SONG Renkang,et al.Nonlinear optical microscopy in two-dimensional materials[J].Optics and Precision Engineering,2022,30(21):2711-2736. DOI: 10.37188/OPE.20223021.2711.
二维材料的低维度特性带来了诸多新奇的光物理现象,其中微纳尺度上的物性在很大程度上影响甚至主导了二维材料的光学性质。因此,表征微纳尺度的物性及其带来的光学响应,是研究二维材料光物理现象潜在机制的重要手段。相较于光谱技术,光学显微技术可以更精准、更广泛、更详细地描述二维材料的光学响应信息;其中,基于非线性光学信号的显微技术可以有效表征二维材料的基本物性,在宽波段响应下具备高的信噪比和分辨率,为二维材料的基础研究和应用探索提供了重要支撑。本文首先回顾了非线性光学显微在二维材料层数、晶轴、晶界、堆叠和外界耦合等方面取得的研究进展,在此基础上,进一步分析探讨了当前领域的技术难点和发展趋势。
The reduced dimensionality of two-dimensional materials gives rise to many novel optical phenomena. In particular, finite size effects and heterogeneities at the micro- to nano-scale significantly modify and even control their linear and nonlinear optical properties. Therefore, optical imaging and spectroscopy of the physical properties at their characteristic length scales are needed to understand and optimize the properties of the two-dimensional materials. In this regime, optical microscopy is one of the most widely applied and effective research techniques. In particular. nonlinear optical microscopy with a high signal-to-noise ratio and resolution under broadband response can effectively characterize the fundamental physical properties of two-dimensional materials, which plays a key role in the elementary research and applications of two-dimensional materials. In this paper, we review the progress of nonlinear optical microscopy in sensitively resolving layer number, crystal axes, grain boundaries, stacking orders, external coupling, etc., in graphene, transition metal dichalcogenides, and their heterostructures. We discuss the technical challenges of nonlinear optical microscopy and provide a perspective on the future of the field.
NOVOSELOV K S , GEIM A K , MOROZOV S V , et al . Electric field effect in atomically thin carbon films [J]. Science , 2004 , 306 ( 5696 ): 666 - 669 . doi: 10.1126/science.1102896 http://dx.doi.org/10.1126/science.1102896
JIANG T , HUANG D , CHENG J L , et al . Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene [J]. Nature Photonics , 2018 , 12 ( 7 ): 430 - 436 . doi: 10.1038/s41566-018-0175-7 http://dx.doi.org/10.1038/s41566-018-0175-7
NETO A H C , GUINEA F , PERES N M R , et al . The electronic properties of graphene [J]. Reviews of Modern Physics , 2009 , 81 ( 1 ): 109 - 162 . doi: 10.1103/revmodphys.81.109 http://dx.doi.org/10.1103/revmodphys.81.109
BONACCORSO F , SUN Z , HASAN T , et al . Graphene photonics and optoelectronics [J]. Nature Photonics , 2010 , 4 ( 9 ): 611 - 622 . doi: 10.1038/nphoton.2010.186 http://dx.doi.org/10.1038/nphoton.2010.186
KOPPENS F H L , CHANG D E , GARCÍA DE ABAJO F J . Graphene plasmonics: a platform for strong light-matter interactions [J]. Nano Letters , 2011 , 11 ( 8 ): 3370 - 3377 . doi: 10.1021/nl201771h http://dx.doi.org/10.1021/nl201771h
ROSS J S , WU S F , YU H Y , et al . Electrical control of neutral and charged excitons in a monolayer semiconductor [J]. Nature Communications , 2013 , 4 : 1474 . doi: 10.1038/ncomms2498 http://dx.doi.org/10.1038/ncomms2498
MAK K F , HE K L , LEE C G , et al . Tightly bound trions in monolayer MoS 2 [J]. Nature Materials , 2013 , 12 ( 3 ): 207 - 211 . doi: 10.1038/nmat3505 http://dx.doi.org/10.1038/nmat3505
YE Z L , CAO T , O’BRIEN K , et al . Probing excitonic dark states in single-layer tungsten disulphide [J]. Nature , 2014 , 513 ( 7517 ): 214 - 218 . doi: 10.1038/nature13734 http://dx.doi.org/10.1038/nature13734
UGEDA M M , BRADLEY A J , SHI S F , et al . Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor [J]. Nature Materials , 2014 , 13 ( 12 ): 1091 - 1095 . doi: 10.1038/nmat4061 http://dx.doi.org/10.1038/nmat4061
HE K L , KUMAR N , ZHAO L , et al . Tightly bound excitons in monolayer WSe 2 [J]. Physical Review Letters , 2014 , 113 ( 2 ): 026803 . doi: 10.1103/physrevlett.113.026803 http://dx.doi.org/10.1103/physrevlett.113.026803
CHERNIKOV A , BERKELBACH T C , HILL H M , et al . Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS 2 [J]. Physical Review Letters , 2014 , 113 ( 7 ): 076802 . doi: 10.1103/physrevlett.113.076802 http://dx.doi.org/10.1103/physrevlett.113.076802
LI Y M , LI J , SHI L K , et al . Light-induced exciton spin Hall effect in van der waals heterostructures [J]. Physical Review Letters , 2015 , 115 ( 16 ): 166804 . doi: 10.1103/physrevlett.115.166804 http://dx.doi.org/10.1103/physrevlett.115.166804
ZHANG P , MA L L , FAN F F , et al . Fracture toughness of graphene [J]. Nature Communications , 2014 , 5 : 3782 . doi: 10.1038/ncomms4782 http://dx.doi.org/10.1038/ncomms4782
DAI S , FEI Z , MA Q , et al . Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride [J]. Science , 2014 , 343 ( 6175 ): 1125 - 1129 . doi: 10.1126/science.1246833 http://dx.doi.org/10.1126/science.1246833
HU F , LUAN Y , SCOTT M E , et al . Imaging exciton-polariton transport in MoSe 2 waveguides [J]. Nature Photonics , 2017 , 11 ( 6 ): 356 - 360 . doi: 10.1038/nphoton.2017.65 http://dx.doi.org/10.1038/nphoton.2017.65
DAI S Y , FANG W J , RIVERA N , et al . Phonon polaritons in monolayers of hexagonal boron nitride [J]. Advanced Materials (Deerfield Beach, Fla) , 2019 , 31 ( 37 ): e1806603 . doi: 10.1002/adma.201806603 http://dx.doi.org/10.1002/adma.201806603
BEN-SASSON A J , WATSON J L , SHEFFLER W , et al . Design of biologically active binary protein 2D materials [J]. Nature , 2021 , 589 ( 7842 ): 468 - 473 . doi: 10.1038/s41586-020-03120-8 http://dx.doi.org/10.1038/s41586-020-03120-8
KAMBE T , IMAOKA S , SHIMIZU M , et al . Liquid crystalline 2D borophene oxide for inorganic optical devices [J]. Nature Communications , 2022 , 13 : 1037 . doi: 10.1038/s41467-022-28625-w http://dx.doi.org/10.1038/s41467-022-28625-w
DONG J Q , LIU L M , TAN C X , et al . Free-standing homochiral 2D monolayers by exfoliation of molecular crystals [J]. Nature , 2022 , 602 ( 7898 ): 606 - 611 . doi: 10.1038/s41586-022-04407-8 http://dx.doi.org/10.1038/s41586-022-04407-8
GARNICA M , STRADI D , BARJA S , et al . Long-range magnetic order in a purely organic 2D layer adsorbed on epitaxial graphene [J]. Nature Physics , 2013 , 9 ( 6 ): 368 - 374 . doi: 10.1038/nphys2610 http://dx.doi.org/10.1038/nphys2610
LIN X , LU J C , SHAO Y , et al . Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters [J]. Nature Materials , 2017 , 16 ( 7 ): 717 - 721 . doi: 10.1038/nmat4915 http://dx.doi.org/10.1038/nmat4915
QIU Z Z , HOLWILL M , OLSEN T , et al . Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene [J]. Nature Communications , 2021 , 12 : 70 . doi: 10.1038/s41467-020-20376-w http://dx.doi.org/10.1038/s41467-020-20376-w
ZHAN G L , CAI Z F , STRUTYŃSKI K , et al . Observing polymerization in 2D dynamic covalent polymers [J]. Nature , 2022 , 603 ( 7903 ): 835 - 840 . doi: 10.1038/s41586-022-04409-6 http://dx.doi.org/10.1038/s41586-022-04409-6
GRAF D , MOLITOR F , ENSSLIN K , et al . Spatially resolved Raman spectroscopy of single- and few-layer graphene [J]. Nano Letters , 2007 , 7 ( 2 ): 238 - 242 . doi: 10.1021/nl061702a http://dx.doi.org/10.1021/nl061702a
MALARD L M , PIMENTA M A , DRESSELHAUS G , et al . Raman spectroscopy in graphene [J]. Physics Reports , 2009 , 473 ( 5/6 ): 51 - 87 . doi: 10.1016/j.physrep.2009.02.003 http://dx.doi.org/10.1016/j.physrep.2009.02.003
SPLENDIANI A , SUN L , ZHANG Y B , et al . Emerging photoluminescence in monolayer MoS 2 [J]. Nano Letters , 2010 , 10 ( 4 ): 1271 - 1275 . doi: 10.1021/nl903868w http://dx.doi.org/10.1021/nl903868w
MAK K F , LEE C G , HONE J , et al . Atomically thin MoS₂: a new direct-gap semiconductor [J]. Physical Review Letters , 2010 , 105 ( 13 ): 136805 . doi: 10.1103/physrevlett.105.136805 http://dx.doi.org/10.1103/physrevlett.105.136805
VENEZUELA P , LAZZERI M , MAURI F . Theory of double-resonant Raman spectra in graphene: intensity and line shape of defect-induced and two-phonon bands [J]. Physical Review B , 2011 , 84 ( 3 ): 035433 . doi: 10.1103/physrevb.84.035433 http://dx.doi.org/10.1103/physrevb.84.035433
WANG G , GERBER I C , BOUET L , et al . Exciton states in monolayer MoSe 2 : impact on interband transitions [J]. 2D Materials , 2015 , 2 ( 4 ): 045005 . doi: 10.1088/2053-1583/2/4/045005 http://dx.doi.org/10.1088/2053-1583/2/4/045005
SEYLER K L , SCHAIBLEY J R , GONG P , et al . Electrical control of second-harmonic generation in a WSe 2 monolayer transistor [J]. Nature Nanotechnology , 2015 , 10 ( 5 ): 407 - 411 . doi: 10.1038/nnano.2015.73 http://dx.doi.org/10.1038/nnano.2015.73
SHREE S , LAGARDE D , LOMBEZ L , et al . Interlayer exciton mediated second harmonic generation in bilayer MoS 2 [J]. Nature Communications , 2021 , 12 : 6894 . doi: 10.1038/s41467-021-27213-8 http://dx.doi.org/10.1038/s41467-021-27213-8
FRANKEN P A , HILL A E , PETERS C W , et al . Generation of optical harmonics [J]. Physical Review Letters , 1961 , 7 ( 4 ): 118 - 119 . doi: 10.1103/physrevlett.7.118 http://dx.doi.org/10.1103/physrevlett.7.118
LIM G K , CHEN Z L , CLARK J , et al . Giant broadband nonlinear optical absorption response in dispersed graphene single sheets [J]. Nature Photonics , 2011 , 5 ( 9 ): 554 - 560 . doi: 10.1038/nphoton.2011.177 http://dx.doi.org/10.1038/nphoton.2011.177
WU L , PATANKAR S , MORIMOTO T , et al . Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals [J]. Nature Physics , 2017 , 13 ( 4 ): 350 - 355 . doi: 10.1038/nphys3969 http://dx.doi.org/10.1038/nphys3969
ZUO Y G , YU W T , LIU C , et al . Optical fibres with embedded two-dimensional materials for ultrahigh nonlinearity [J]. Nature Nanotechnology , 2020 , 15 ( 12 ): 987 - 991 . doi: 10.1038/s41565-020-0770-x http://dx.doi.org/10.1038/s41565-020-0770-x
HONG H , WU C C , ZHAO Z X , et al . Giant enhancement of optical nonlinearity in two-dimensional materials by multiphoton-excitation resonance energy transfer from quantum dots [J]. Nature Photonics , 2021 , 15 ( 7 ): 510 - 515 . doi: 10.1038/s41566-021-00801-2 http://dx.doi.org/10.1038/s41566-021-00801-2
SHEN Y R . The Principles of Nonlinear Optics [M]. New York : J. Wiley , 1984 .
CHENG J L , VERMEULEN N , SIPE J E . Third order optical nonlinearity of graphene [J]. New Journal of Physics , 2014 , 16 : 053014 . doi: 10.1088/1367-2630/16/5/053014 http://dx.doi.org/10.1088/1367-2630/16/5/053014
ZHANG Y , HUANG D , SHAN Y W , et al . Doping-induced second-harmonic generation in centrosymmetric graphene from quadrupole response [J]. Physical Review Letters , 2019 , 122 ( 4 ): 047401 . doi: 10.1103/physrevlett.122.047401 http://dx.doi.org/10.1103/physrevlett.122.047401
SHAN Y W , LI Y G , HUANG D , et al . Stacking symmetry governed second harmonic generation in graphene trilayers [J]. Science Advances , 2018 , 4 ( 6 ): eaat0074 . doi: 10.1126/sciadv.aat0074 http://dx.doi.org/10.1126/sciadv.aat0074
VANDELLI M , KATSNELSON M I , STEPANOV E A . Resonant optical second harmonic generation in graphene-based heterostructures [J]. Physical Review B , 2019 , 99 ( 16 ): 165432 . doi: 10.1103/physrevb.99.165432 http://dx.doi.org/10.1103/physrevb.99.165432
KUMAR N , KUMAR J , GERSTENKORN C , et al . Third harmonic generation in graphene and few-layer graphite films [J]. Physical Review B-Condensed Matter and Materials Physics , 2013 , 87 ( 12 ): 121406 . doi: 10.1103/physrevb.87.121406 http://dx.doi.org/10.1103/physrevb.87.121406
SÄYNÄTJOKI A , KARVONEN L , RIIKONEN J , et al . Rapid large-area multiphoton microscopy for characterization of graphene [J]. ACS Nano , 2013 , 7 ( 10 ): 8441 - 8446 . doi: 10.1021/nn4042909 http://dx.doi.org/10.1021/nn4042909
CIESIELSKI R , COMIN A , HANDLOSER M , et al . Graphene near-degenerate four-wave mixing for phase characterization of broadband pulses in ultrafast microscopy [J]. Nano Letters , 2015 , 15 ( 8 ): 4968 - 4972 . doi: 10.1021/acs.nanolett.5b00893 http://dx.doi.org/10.1021/acs.nanolett.5b00893
GU T , PETRONE N , MCMILLAN J F , et al . Regenerative oscillation and four-wave mixing in graphene optoelectronics [J]. Nature Photonics , 2012 , 6 ( 8 ): 554 - 559 . doi: 10.1038/nphoton.2012.147 http://dx.doi.org/10.1038/nphoton.2012.147
HENDRY E , HALE P J , MOGER J , et al . Coherent nonlinear optical response of graphene [J]. Physical Review Letters , 2010 , 105 ( 9 ): 097401 . doi: 10.1103/physrevlett.105.097401 http://dx.doi.org/10.1103/physrevlett.105.097401
KIM C J , BROWN L , GRAHAM M W , et al . Stacking order dependent second harmonic generation and topological defects in h-BN bilayers [J]. Nano Letters , 2013 , 13 ( 11 ): 5660 - 5665 . doi: 10.1021/nl403328s http://dx.doi.org/10.1021/nl403328s
LI Y L , RAO Y , MAK K F , et al . Probing symmetry properties of few-layer MoS 2 and h-BN by optical second-harmonic generation [J]. Nano Letters , 2013 , 13 ( 7 ): 3329 - 3333 . doi: 10.1021/nl401561r http://dx.doi.org/10.1021/nl401561r
KIM S , FRÖCH J E , GARDNER A , et al . Second-harmonic generation in multilayer hexagonal boron nitride flakes [J]. Optics Letters , 2019 , 44 ( 23 ): 5792 - 5795 . doi: 10.1364/ol.44.005792 http://dx.doi.org/10.1364/ol.44.005792
LUCKING M C , BEACH K , TERRONES H . Large second harmonic generation in alloyed TMDs and boron nitride nanostructures [J]. Scientific Reports , 2018 , 8 : 10118 . doi: 10.1038/s41598-018-27702-9 http://dx.doi.org/10.1038/s41598-018-27702-9
POPKOVA A A , ANTROPOV I M , FRÖCH J E , et al . Optical third-harmonic generation in hexagonal boron nitride thin films [J]. ACS Photonics , 2021 , 8 ( 3 ): 824 - 831 . doi: 10.1021/acsphotonics.0c01759 http://dx.doi.org/10.1021/acsphotonics.0c01759
MALARD L M , ALENCAR T V , BARBOZA A P M , et al . Observation of intense second harmonic generation from MoS 2 atomic crystals [J]. Physical Review B-Condensed Matter and Materials Physics , 2013 , 87 ( 20 ): 201401 . doi: 10.1103/physrevb.87.201401 http://dx.doi.org/10.1103/physrevb.87.201401
KUMAR N , NAJMAEI S , CUI Q N , et al . Second harmonic microscopy of monolayer MoS 2 [J]. Physical Review B , 2013 , 87 ( 16 ): 161403 . doi: 10.1103/physrevb.87.161403 http://dx.doi.org/10.1103/physrevb.87.161403
YIN X B , YE Z L , CHENET D A , et al . Edge nonlinear optics on a MoS₂ atomic monolayer [J]. Science , 2014 , 344 ( 6183 ): 488 - 490 . doi: 10.1126/science.1250564 http://dx.doi.org/10.1126/science.1250564
JANISCH C , WANG Y X , MA D , et al . Extraordinary second harmonic generation in tungsten disulfide monolayers [J]. Scientific Reports , 2014 , 4 : 5530 . doi: 10.1038/srep05530 http://dx.doi.org/10.1038/srep05530
TROLLE M L , TSAO Y C , PEDERSEN K , et al . Observation of excitonic resonances in the second harmonic spectrum of MoS 2 [J]. Physical Review B , 2015 , 92 ( 16 ): 161409 . doi: 10.1103/physrevb.92.161409 http://dx.doi.org/10.1103/physrevb.92.161409
WANG G , MARIE X , GERBER I , et al . Giant enhancement of the optical second-harmonic emission of WSe 2 monolayers by laser excitation at exciton resonances [J]. Physical Review Letters , 2015 , 114 ( 9 ): 097403 . doi: 10.1103/physrevlett.114.097403 http://dx.doi.org/10.1103/physrevlett.114.097403
YU H K , TALUKDAR D , XU W G , et al . Charge-induced second-harmonic generation in bilayer WSe 2 [J]. Nano Letters , 2015 , 15 ( 8 ): 5653 - 5657 . doi: 10.1021/acs.nanolett.5b02547 http://dx.doi.org/10.1021/acs.nanolett.5b02547
BEAMS R , CANÇADO L G , KRYLYUK S , et al . Characterization of few-layer 1T' MoTe 2 by polarization-resolved second harmonic generation and Raman scattering [J]. ACS Nano , 2016 , 10 ( 10 ): 9626 - 9636 . doi: 10.1021/acsnano.6b05127 http://dx.doi.org/10.1021/acsnano.6b05127
WOODWARD R I , MURRAY R T , PHELAN C F , et al . Characterization of the second- and third-order nonlinear optical susceptibilities of monolayer MoS 2 using multiphoton microscopy [J]. 2D Materials , 2016 , 4 ( 1 ): 011006 . doi: 10.1088/2053-1583/4/1/011006 http://dx.doi.org/10.1088/2053-1583/4/1/011006
LI D W , XIONG W , JIANG L J , et al . Multimodal nonlinear optical imaging of MoS 2 and MoS 2 -based van der waals heterostructures [J]. ACS Nano , 2016 , 10 ( 3 ): 3766 - 3775 . doi: 10.1021/acsnano.6b00371 http://dx.doi.org/10.1021/acsnano.6b00371
FAN X P , JIANG Y , ZHUANG X J , et al . Broken symmetry induced strong nonlinear optical effects in spiral WS 2 nanosheets [J]. ACS Nano , 2017 , 11 ( 5 ): 4892 - 4898 . doi: 10.1021/acsnano.7b01457 http://dx.doi.org/10.1021/acsnano.7b01457
CHEN H T , CORBOLIOU V , SOLNTSEV A S , et al . Enhanced second-harmonic generation from two-dimensional MoSe 2 on a silicon waveguide [J]. Light: Science & Applications , 2017 , 6 ( 10 ): e17060 . doi: 10.1038/lsa.2017.60 http://dx.doi.org/10.1038/lsa.2017.60
SÄYNÄTJOKI A , KARVONEN L , ROSTAMI H , et al . Ultra-strong nonlinear optical processes and trigonal warping in MoS 2 layers [J]. Nature Communications , 2017 , 8 : 893 . doi: 10.1038/s41467-017-00749-4 http://dx.doi.org/10.1038/s41467-017-00749-4
KARVONEN L , SÄYNÄTJOKI A , HUTTUNEN M J , et al . Rapid visualization of grain boundaries in monolayer MoS 2 by multiphoton microscopy [J]. Nature Communications , 2017 , 8 : 15714 . doi: 10.1038/ncomms15714 http://dx.doi.org/10.1038/ncomms15714
ANTON A , HENRI J , ANDREA M , et al . Optical harmonic generation in monolayer group-VI transition metal dichalcogenides [J]. Physical Review B , 2018 , 98 ( 11 ): 115426 . doi: 10.1103/physrevb.98.115426 http://dx.doi.org/10.1103/physrevb.98.115426
JAKUBCZYK T , DELMONTE V , KOPERSKI M , et al . Radiatively limited dephasing and exciton dynamics in MoSe 2 monolayers revealed with four-wave mixing microscopy [J]. Nano Letters , 2016 , 16 ( 9 ): 5333 - 5339 . doi: 10.1021/acs.nanolett.6b01060 http://dx.doi.org/10.1021/acs.nanolett.6b01060
YOUNGBLOOD N , PENG R M , NEMILENTSAU A , et al . Layer-tunable third-harmonic generation in multilayer black phosphorus [J]. ACS Photonics , 2017 , 4 ( 1 ): 8 - 14 . doi: 10.1021/acsphotonics.6b00639 http://dx.doi.org/10.1021/acsphotonics.6b00639
AUTERE A , RYDER C R , SÄYNÄTJOKI A , et al . Rapid and large-area characterization of exfoliated black phosphorus using third-harmonic generation microscopy [J]. The Journal of Physical Chemistry Letters , 2017 , 8 ( 7 ): 1343 - 1350 . doi: 10.1021/acs.jpclett.7b00140 http://dx.doi.org/10.1021/acs.jpclett.7b00140
MARGULIS V A , MURYUMIN E E , GAIDUK E A . Coherent nonlinear optical response of single-layer black phosphorus: third-harmonic generation [J]. The European Physical Journal B , 2017 , 90 ( 11 ): 203 . doi: 10.1140/epjb/e2017-80420-1 http://dx.doi.org/10.1140/epjb/e2017-80420-1
UDDIN S , DEBNATH P C , PARK K , et al . Nonlinear black phosphorus for ultrafast optical switching [J]. Scientific Reports , 2017 , 7 : 43371 . doi: 10.1038/srep43371 http://dx.doi.org/10.1038/srep43371
YANG T S , ABDELWAHAB I , LIN H , et al . Anisotropic third-order nonlinearity in pristine and lithium hydride intercalated black phosphorus [J]. ACS Photonics , 2018 , 5 ( 12 ): 4969 - 4977 . doi: 10.1021/acsphotonics.8b01200 http://dx.doi.org/10.1021/acsphotonics.8b01200
CHEN Z Y , QIN R . Strong-field nonlinear optical properties of monolayer black phosphorus [J]. Nanoscale , 2019 , 11 ( 35 ): 16377 - 16383 . doi: 10.1039/c9nr04895b http://dx.doi.org/10.1039/c9nr04895b
SUN Z Y , YI Y F , SONG T C , et al . Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI 3 [J]. Nature , 2019 , 572 ( 7770 ): 497 - 501 . doi: 10.1038/s41586-019-1445-3 http://dx.doi.org/10.1038/s41586-019-1445-3
ZENG H L , LIU G B , DAI J F , et al . Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides [J]. Scientific Reports , 2013 , 3 : 1608 . doi: 10.1038/srep01608 http://dx.doi.org/10.1038/srep01608
ZHAO M , YE Z L , SUZUKI R , et al . Atomically phase-matched second-harmonic generation in a 2D crystal [J]. Light: Science & Applications , 2016 , 5 ( 8 ): e16131 . doi: 10.1038/lsa.2016.131 http://dx.doi.org/10.1038/lsa.2016.131
YU J , KUANG X F , LI J Z , et al . Giant nonlinear optical activity in two-dimensional palladium diselenide [J]. Nature Communications , 2021 , 12 : 1083 . doi: 10.1038/s41467-021-21267-4 http://dx.doi.org/10.1038/s41467-021-21267-4
SONG Y , TIAN R J , YANG J L , et al . Second harmonic generation in atomically thin MoTe 2 [J]. Advanced Optical Materials , 2018 , 6 ( 17 ): 1701334 . doi: 10.1002/adom.201701334 http://dx.doi.org/10.1002/adom.201701334
DU L J , HASAN T , CASTELLANOS-GOMEZ A , et al . Engineering symmetry breaking in 2D layered materials [J]. Nature Reviews Physics , 2021 , 3 ( 3 ): 193 - 206 . doi: 10.1038/s42254-020-00276-0 http://dx.doi.org/10.1038/s42254-020-00276-0
SONG Y , HU S Q , LIN M L , et al . Extraordinary second harmonic generation in ReS 2 atomic crystals [J]. ACS Photonics , 2018 , 5 ( 9 ): 3485 - 3491 . doi: 10.1021/acsphotonics.8b00685 http://dx.doi.org/10.1021/acsphotonics.8b00685
BALLA N , O’BRIEN M , MCEVOY N , et al . Effects of excitonic resonance on second and third order nonlinear scattering from few-layer MoS 2 [J]. ACS Photonics , 2018 , 5 ( 4 ): 1235 - 1240 . doi: 10.1021/acsphotonics.7b00912 http://dx.doi.org/10.1021/acsphotonics.7b00912
HONG S Y , DADAP J I , PETRONE N , et al . Optical third-harmonic generation in graphene [J]. Physical Review X , 2013 , 3 ( 2 ): 021014 . doi: 10.1103/physrevx.3.021014 http://dx.doi.org/10.1103/physrevx.3.021014
WANG M M , LI D W , LIU K , et al . Nonlinear optical imaging, precise layer thinning, and phase engineering in MoTe 2 with femtosecond laser [J]. ACS Nano , 2020 , 14 ( 9 ): 11169 - 11177 . doi: 10.1021/acsnano.0c02649 http://dx.doi.org/10.1021/acsnano.0c02649
YANG H , GUAN H H , BIEKERT N , et al . Layer dependence of third-harmonic generation in thick multilayer graphene [J]. Physical Review Materials , 2018 , 2 ( 7 ): 071002 . doi: 10.1103/physrevmaterials.2.071002 http://dx.doi.org/10.1103/physrevmaterials.2.071002
NAIR R R , BLAKE P , GRIGORENKO A N , et al . Fine structure constant defines visual transparency of graphene [J]. Science , 2008 , 320 ( 5881 ): 1308 . doi: 10.1126/science.1156965 http://dx.doi.org/10.1126/science.1156965
BISWAS R , DANDU M , MENON S , et al . Third-harmonic generation in multilayer Tin Diselenide under the influence of Fabry-Perot interference effects [J]. Optics Express , 2019 , 27 ( 20 ): 28855 - 28865 . doi: 10.1364/oe.27.028855 http://dx.doi.org/10.1364/oe.27.028855
LI D W , ZHOU Y S , HUANG X , et al . In situ imaging and control of layer-by-layer femtosecond laser thinning of graphene [J]. Nanoscale , 2015 , 7 ( 8 ): 3651 - 3659 . doi: 10.1039/c4nr07078j http://dx.doi.org/10.1039/c4nr07078j
WANG J H , YU H D , ZHOU X , et al . Probing the crystallographic orientation of two-dimensional atomic crystals with supramolecular self-assembly [J]. Nature Communications , 2017 , 8 : 377 . doi: 10.1038/s41467-017-00329-6 http://dx.doi.org/10.1038/s41467-017-00329-6
SHI Z M , WANG X J , SUN Y H , et al . Interlayer coupling in two-dimensional semiconductor materials [J]. Semiconductor Science and Technology , 2018 , 33 ( 9 ): 093001 . doi: 10.1088/1361-6641/aad6c3 http://dx.doi.org/10.1088/1361-6641/aad6c3
THOMPSON J J P , PEI D , PENG H , et al . Determination of interatomic coupling between two-dimensional crystals using angle-resolved photoemission spectroscopy [J]. Nature Communications , 2020 , 11 : 3582 . doi: 10.1038/s41467-020-17412-0 http://dx.doi.org/10.1038/s41467-020-17412-0
GAO L B , REN W C , XU H L , et al . Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum [J]. Nature Communications , 2012 , 3 : 699 . doi: 10.1038/ncomms1702 http://dx.doi.org/10.1038/ncomms1702
CAI Z Y , LIU B L , ZOU X L , et al . Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures [J]. Chemical Reviews , 2018 , 118 ( 13 ): 6091 - 6133 . doi: 10.1021/acs.chemrev.7b00536 http://dx.doi.org/10.1021/acs.chemrev.7b00536
HAN Z Y , LI L , JIAO F , et al . Continuous orientated growth of scaled single-crystal 2D monolayer films [J]. Nanoscale Advances , 2021 , 3 ( 23 ): 6545 - 6567 . doi: 10.1039/d1na00545f http://dx.doi.org/10.1039/d1na00545f
YANG P F , WANG D S , ZHAO X X , et al . Epitaxial growth of inch-scale single-crystal transition metal dichalcogenides through the patching of unidirectionally orientated ribbons [J]. Nature Communications , 2022 , 13 : 3238 . 104. doi: 10.1038/s41467-022-30900-9 http://dx.doi.org/10.1038/s41467-022-30900-9
LI G C , LEI D Y , QIU M , et al . Light-induced symmetry breaking for enhancing second-harmonic generation from an ultrathin plasmonic nanocavity [J]. Nature Communications , 2021 , 12 : 4326 . doi: 10.1038/s41467-021-24408-x http://dx.doi.org/10.1038/s41467-021-24408-x
PSILODIMITRAKOPOULOS S , MOUCHLIADIS L , PARADISANOS I , et al . Ultrahigh-resolution nonlinear optical imaging of the armchair orientation in 2D transition metal dichalcogenides [J]. Light: Science & Applications , 2018 , 7 ( 5 ): 18005 . doi: 10.1038/lsa.2018.5 http://dx.doi.org/10.1038/lsa.2018.5
CHENG J X , JIANG T , JI Q Q , et al . Kinetic nature of grain boundary formation in As-grown MoS 2 monolayers [J]. Advanced Materials (Deerfield Beach, Fla) , 2015 , 27 ( 27 ): 4069 - 4074 . doi: 10.1002/adma.201501354 http://dx.doi.org/10.1002/adma.201501354
VAN DER ZANDE A M , HUANG P Y , CHENET D A , et al . Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide [J]. Nature Materials , 2013 , 12 ( 6 ): 554 - 561 . doi: 10.1038/nmat3633 http://dx.doi.org/10.1038/nmat3633
QIAN Q K , ZU R , JI Q Q , et al . Chirality-dependent second harmonic generation of MoS 2 nanoscroll with enhanced efficiency [J]. ACS Nano , 2020 , 14 ( 10 ): 13333 - 13342 . doi: 10.1021/acsnano.0c05189 http://dx.doi.org/10.1021/acsnano.0c05189
XIA H M , CHEN X Y , LUO S , et al . Probing the chiral domains and excitonic states in individual WS 2 tubes by second-harmonic generation [J]. Nano Letters , 2021 , 21 ( 12 ): 4937 - 4943 . doi: 10.1021/acs.nanolett.1c00497 http://dx.doi.org/10.1021/acs.nanolett.1c00497
HUANG P Y , RUIZ-VARGAS C S , VAN DER ZANDE A M , et al . Grains and grain boundaries in single-layer graphene atomic patchwork quilts [J]. Nature , 2011 , 469 ( 7330 ): 389 - 392 . doi: 10.1038/nature09718 http://dx.doi.org/10.1038/nature09718
LIN K I , HO Y H , LIU S B , et al . Atom-dependent edge-enhanced second-harmonic generation on MoS 2 monolayers [J]. Nano Letters , 2018 , 18 ( 2 ): 793 - 797 . doi: 10.1021/acs.nanolett.7b04006 http://dx.doi.org/10.1021/acs.nanolett.7b04006
CHENG J X , HUANG D , JIANG T , et al . Chiral selection rules for multi-photon processes in two-dimensional honeycomb materials [J]. Optics Letters , 2019 , 44 ( 9 ): 2141 - 2144 . doi: 10.1364/ol.44.002141 http://dx.doi.org/10.1364/ol.44.002141
CARVALHO B R , WANG Y X , FUJISAWA K , et al . Nonlinear dark-field imaging of one-dimensional defects in monolayer dichalcogenides [J]. Nano Letters , 2020 , 20 ( 1 ): 284 - 291 . doi: 10.1021/acs.nanolett.9b03795 http://dx.doi.org/10.1021/acs.nanolett.9b03795
ZENG Z , SUN X X , ZHANG D L , et al . Controlled vapor growth and nonlinear optical applications of large-area 3R phase WS 2 and WSe 2 atomic layers [J]. Advanced Functional Materials , 2019 , 29 ( 11 ): 1806874 . doi: 10.1002/adfm.201806874 http://dx.doi.org/10.1002/adfm.201806874
BISWAS R , DANDU M , PROSAD A , et al . Strong near band-edge excited second-harmonic generation from multilayer 2H Tin diselenide [J]. Scientific Reports , 2021 , 11 ( 1 ): 15017 . doi: 10.1038/s41598-021-94612-8 http://dx.doi.org/10.1038/s41598-021-94612-8
WANG Q H , KALANTAR-ZADEH K , KIS A , et al . Electronics and optoelectronics of two-dimensional transition metal dichalcogenides [J]. Nature Nanotechnology , 2012 , 7 ( 11 ): 699 - 712 . doi: 10.1038/nnano.2012.193 http://dx.doi.org/10.1038/nnano.2012.193
JIANG T , LIU H R , HUANG D , et al . Valley and band structure engineering of folded MoS 2 bilayers [J]. Nature Nanotechnology , 2014 , 9 ( 10 ): 825 - 829 . doi: 10.1038/nnano.2014.176 http://dx.doi.org/10.1038/nnano.2014.176
HSU W T , ZHAO Z A , LI L J , et al . Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers [J]. ACS Nano , 2014 , 8 ( 3 ): 2951 - 2958 . doi: 10.1021/nn500228r http://dx.doi.org/10.1021/nn500228r
PSILODIMITRAKOPOULOS S , MOUCHLIADIS L , PARADISANOS I , et al . Twist angle mapping in layered WS 2 by polarization-resolved second harmonic generation [J]. Scientific Reports , 2019 , 9 : 14285 . doi: 10.1038/s41598-019-50534-0 http://dx.doi.org/10.1038/s41598-019-50534-0
ZHOU X , CHENG J X , ZHOU Y B , et al . Strong second-harmonic generation in atomic layered GaSe [J]. Journal of the American Chemical Society , 2015 , 137 ( 25 ): 7994 - 7997 . doi: 10.1021/jacs.5b04305 http://dx.doi.org/10.1021/jacs.5b04305
YANG F Y , SONG W S , MENG F H , et al . Tunable second harmonic generation in twisted bilayer graphene [J]. Matter , 2020 , 3 ( 4 ): 1361 - 1376 . doi: 10.1016/j.matt.2020.08.018 http://dx.doi.org/10.1016/j.matt.2020.08.018
YAO K Y , FINNEY N R , ZHANG J , et al . Enhanced tunable second harmonic generation from twistable interfaces and vertical superlattices in boron nitride homostructures [J]. Science Advances , 2021 , 7 ( 10 ): eabe8691 . doi: 10.1126/sciadv.abe8691 http://dx.doi.org/10.1126/sciadv.abe8691
NAGLER P , BALLOTTIN M V , MITIOGLU A A , et al . Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures [J]. Nature Communications , 2017 , 8 : 1551 . doi: 10.1038/s41467-017-01748-1 http://dx.doi.org/10.1038/s41467-017-01748-1
LI M Y , SHI Y M , CHENG C C , et al . NANOELECTRONICS. Epitaxial growth of a monolayer WSe 2 -MoS 2 lateral p-n junction with an atomically sharp interface [J]. Science , 2015 , 349 ( 6247 ): 524 - 528 . doi: 10.1126/science.aab4097 http://dx.doi.org/10.1126/science.aab4097
HONG X P , KIM J , SHI S F , et al . Ultrafast charge transfer in atomically thin MoS 2 /WS 2 heterostructures [J]. Nature Nanotechnology , 2014 , 9 ( 9 ): 682 - 686 . doi: 10.1038/nnano.2014.167 http://dx.doi.org/10.1038/nnano.2014.167
ZHU H M , WANG J , GONG Z Z , et al . Interfacial charge transfer circumventing momentum mismatch at two-dimensional van der waals heterojunctions [J]. Nano Letters , 2017 , 17 ( 6 ): 3591 - 3598 . doi: 10.1021/acs.nanolett.7b00748 http://dx.doi.org/10.1021/acs.nanolett.7b00748
WEN X W , CHEN H L , WU T M , et al . Ultrafast probes of electron-hole transitions between two atomic layers [J]. Nature Communications , 2018 , 9 : 1859 . doi: 10.1038/s41467-018-04751-2 http://dx.doi.org/10.1038/s41467-018-04751-2
RIGOSI A F , HILL H M , LI Y L , et al . Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS 2 /WS 2 and MoSe 2 /WSe 2 [J]. Nano Letters , 2015 , 15 ( 8 ): 5033 - 5038 . doi: 10.1021/acs.nanolett.5b01055 http://dx.doi.org/10.1021/acs.nanolett.5b01055
SCHAIBLEY J R , RIVERA P , YU H Y , et al . Directional interlayer spin-valley transfer in two-dimensional heterostructures [J]. Nature Communications , 2016 , 7 : 13747 . doi: 10.1038/ncomms13747 http://dx.doi.org/10.1038/ncomms13747
YAO P , HE D W , ZERESHKI P , et al . Nonlinear optical effect of interlayer charge transfer in a van der Waals heterostructure [J]. Applied Physics Letters , 2019 , 115 ( 26 ): 263103 . doi: 10.1063/1.5131165 http://dx.doi.org/10.1063/1.5131165
LIAO M Z , WU Z W , DU L J , et al . Twist angle-dependent conductivities across MoS 2 /graphene heterojunctions [J]. Nature Communications , 2018 , 9 : 4068 . doi: 10.1038/s41467-018-06555-w http://dx.doi.org/10.1038/s41467-018-06555-w
VÁZQUEZ SULLEIRO M , DEVELIOGLU A , QUIRÓS-OVIES R , et al . Fabrication of devices featuring covalently linked MoS 2 –graphene heterostructures [J]. Nature Chemistry , 2022 , 14 ( 6 ): 695 - 700 . doi: 10.1038/s41557-022-00924-1 http://dx.doi.org/10.1038/s41557-022-00924-1
MENNEL L , FURCHI M M , WACHTER S , et al . Optical imaging of strain in two-dimensional crystals [J]. Nature Communications , 2018 , 9 : 516 . doi: 10.1038/s41467-018-02830-y http://dx.doi.org/10.1038/s41467-018-02830-y
WANG Y , XIAO J , CHUNG T F , et al . Direct electrical modulation of second-order optical susceptibility via phase transitions [J]. Nature Electronics , 2021 , 4 ( 10 ): 725 - 730 . doi: 10.1038/s41928-021-00655-0 http://dx.doi.org/10.1038/s41928-021-00655-0
WANG Y , XIAO J , ZHU H Y , et al . Structural phase transition in monolayer MoTe 2 driven by electrostatic doping [J]. Nature , 2017 , 550 ( 7677 ): 487 - 491 . doi: 10.1038/nature24043 http://dx.doi.org/10.1038/nature24043
WANG Z , DONG Z G , ZHU H , et al . Selectively plasmon-enhanced second-harmonic generation from monolayer tungsten diselenide on flexible substrates [J]. ACS Nano , 2018 , 12 ( 2 ): 1859 - 1867 . doi: 10.1021/acsnano.7b08682 http://dx.doi.org/10.1021/acsnano.7b08682
LI Y , KANG M , SHI J J , et al . Transversely divergent second harmonic generation by surface plasmon polaritons on single metallic nanowires [J]. Nano Letters , 2017 , 17 ( 12 ): 7803 - 7808 . doi: 10.1021/acs.nanolett.7b04016 http://dx.doi.org/10.1021/acs.nanolett.7b04016
NAUMAN M , YAN J S , DE CEGLIA D , et al . Tunable unidirectional nonlinear emission from transition-metal-dichalcogenide metasurfaces [J]. Nature Communications , 2021 , 12 : 5597 . doi: 10.1038/s41467-021-25717-x http://dx.doi.org/10.1038/s41467-021-25717-x
BORN M A X , WOLF E . Chapter VIII-Elements of the Theory of Diffraction [M]. BORN M A X , WOLF E. Principles of Optics (Sixth Edition). Pergamon. 1980 : 370 - 458 . doi: 10.1016/b978-0-08-026482-0.50015-3 http://dx.doi.org/10.1016/b978-0-08-026482-0.50015-3
JIANG T , KRAVTSOV V , TOKMAN M , et al . Ultrafast coherent nonlinear nanooptics and nanoimaging of graphene [J]. Nature Nanotechnology , 2019 , 14 ( 9 ): 838 - 843 . doi: 10.1038/s41565-019-0515-x http://dx.doi.org/10.1038/s41565-019-0515-x
YAO K Y , ZHANG S , EMANUIL Y , et al . Nanoscale optical imaging of 2D semiconductor stacking orders by exciton-enhanced second harmonic generation [J]. Advanced Optical Materials , 2022 , 10 ( 12 ): 2200085 . doi: 10.1002/adom.202200085 http://dx.doi.org/10.1002/adom.202200085
PARK K D , RASCHKE M B . Polarization control with plasmonic antenna tips: a universal approach to optical nanocrystallography and vector-field imaging [J]. Nano Letters , 2018 , 18 ( 5 ): 2912 - 2917 . doi: 10.1021/acs.nanolett.8b00108 http://dx.doi.org/10.1021/acs.nanolett.8b00108
ZHANG R , ZHANG Y , DONG Z C , et al . Chemical mapping of a single molecule by plasmon-enhanced Raman scattering [J]. Nature , 2013 , 498 ( 7452 ): 82 - 86 . doi: 10.1038/nature12151 http://dx.doi.org/10.1038/nature12151
XU C , WEBB W W . Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm [J]. Journal of the Optical Society of America B , 1996 , 13 ( 3 ): 481 - 491 . doi: 10.1364/josab.13.000481 http://dx.doi.org/10.1364/josab.13.000481
YI J , PARK H , HAN J , et al . Effect of laser beam non-uniformity and the AC Stark shift on the two-photon resonant three-photon ionization process of the cesium atom [J]. Journal of the Korean Physical Society , 1998 , 33 ( 3 ): 297 - 300 .
KRAVTSOV V , ULBRICHT R , ATKIN J M , et al . Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging [J]. Nature Nanotechnology , 2016 , 11 ( 5 ): 459 - 464 . doi: 10.1038/nnano.2015.336 http://dx.doi.org/10.1038/nnano.2015.336
HAO K , MOODY G , WU F C , et al . Direct measurement of exciton valley coherence in monolayer WSe 2 [J]. Nature Physics , 2016 , 12 ( 7 ): 677 - 682 . doi: 10.1038/nphys3674 http://dx.doi.org/10.1038/nphys3674
BASOV D N , FOGLER M M . The quest for ultrafast plasmonics [J]. Nature Nanotechnology , 2017 , 12 ( 3 ): 187 - 188 . doi: 10.1038/nnano.2016.283 http://dx.doi.org/10.1038/nnano.2016.283
LANGER F , SCHMID C P , SCHLAUDERER S , et al . Lightwave valleytronics in a monolayer of tungsten diselenide [J]. Nature , 2018 , 557 ( 7703 ): 76 - 80 . doi: 10.1038/s41586-018-0013-6 http://dx.doi.org/10.1038/s41586-018-0013-6
0
浏览量
689
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构