浏览全部资源
扫码关注微信
1.同济大学 物理科学与工程学院 同济大学精密光学工程技术研究所,上海 200092
2.先进微结构材料教育部重点实验室,上海 200092
3.上海市数字光学前沿科学研究基地,上海 200092
4.上海市全光谱高性能光学薄膜器件与应用专业技术服务平台,上海 200092
5.新加坡南洋理工大学 电气与电子工程学院,新加坡 639798
6.新加坡国立大学 电气与计算机工程系,新加坡 117583
[ "施宇智(1989-),男,江苏南通人,特聘研究员,博士生导师,分别于2012年、2018年在西安交通大学获得学士、博士学位,主要从事光流控、光镊、微纳光学等方面的研究。E-mail: yzshi@tongji.edu.cn" ]
收稿日期:2022-07-16,
修回日期:2022-08-22,
纸质出版日期:2022-11-10
移动端阅览
施宇智,刘爱群,仇成伟等.光流控光镊操控研究进展[J].光学精密工程,2022,30(21):2765-2782.
SHI Yuzhi,LIU Aiqun,QIU Chengwei,et al.Research progress on optofluidic optical tweezers[J].Optics and Precision Engineering,2022,30(21):2765-2782.
施宇智,刘爱群,仇成伟等.光流控光镊操控研究进展[J].光学精密工程,2022,30(21):2765-2782. DOI: 10.37188/OPE.20223021.2765.
SHI Yuzhi,LIU Aiqun,QIU Chengwei,et al.Research progress on optofluidic optical tweezers[J].Optics and Precision Engineering,2022,30(21):2765-2782. DOI: 10.37188/OPE.20223021.2765.
光镊技术利用光与颗粒之间动量传递的力学效应对颗粒进行操控,具有无接触、操控尺寸小等优点,在生物医学和物理化学等领域具有重要的应用价值。光镊操控起初主要是在静态环境中对单个和多个颗粒进行操控,分为单/多光束光镊、全息光镊、等离子光镊、光纤光镊、特殊光力/力矩光镊和光电热镊子等。光镊技术随后与微流控技术进行结合诞生了光流控光镊操控技术,大大提高了可操控颗粒的数量和效率,同时也丰富了操控功能。本文从光流控光镊类别、物理机制以及生物医学应用等方面出发,对光流控光镊操控进行了回顾和讨论,最后对光流控光镊操控潜在的挑战进行了总结,对未来的发展方向如高通量单病毒操控和检测、光驱动机器人等进行了展望。
Optical tweezers, which utilize optical forces from the momenta exchange of light and a particle, have advantages of being non-invasive and has a small manipulating size. Therefore, they have important applications in the biomedical, physical, and chemical sciences. Optical tweezers at the early stage manipulate single or multiple particles in a motionless environment and can be classified into various classical categories, such as single/multiple-beam optical tweezers, holographic optical tweezers, plasmon optical tweezers, fiber optical tweezers, optical tweezers with special forces and torques, opto-thermal-electrical tweezers, etc. Optical tweezers later fuse with the optofluidic technique, increasing manipulating quantity and efficiency. This study reviews and comments on the recent progresses of optofluidic manipulation by focusing on the categories of optofluidic optical tweezers, mechanisms of optical tweezers as well as their biomedical applications. Meanwhile, potential challenges of optofluidic manipulation are summarized. In addition, perspectives on the future developments of optofluidic optical tweezers such as high-throughput manipulation and detection of single viruses as well as light-driven microrobots are provided.
ASHKIN A , DZIEDZIC J M , BJORKHOLM J E , et al . Observation of a single-beam gradient force optical trap for dielectric particles [J]. Optics Letters , 1986 , 11 ( 5 ): 288 - 290 . doi: 10.1364/ol.11.000288 http://dx.doi.org/10.1364/ol.11.000288
GRIER D G . A revolution in optical manipulation [J]. Nature , 2003 , 424 ( 6950 ): 810 - 816 . doi: 10.1038/nature01935 http://dx.doi.org/10.1038/nature01935
ASHKIN A , DZIEDZIC J M . Optical trapping and manipulation of viruses and bacteria [J]. Science , 1987 , 235 ( 4795 ): 1517 - 1520 . doi: 10.1126/science.3547653 http://dx.doi.org/10.1126/science.3547653
ASHKIN A , DZIEDZIC J M , YAMANE T . Optical trapping and manipulation of single cells using infrared laser beams [J]. Nature , 1987 , 330 ( 6150 ): 769 - 771 . doi: 10.1038/330769a0 http://dx.doi.org/10.1038/330769a0
PERTSINIDIS A , ZHANG Y X , CHU S . Subnanometre single-molecule localization, registration and distance measurements [J]. Nature , 2010 , 466 ( 7306 ): 647 - 651 . doi: 10.1038/nature09163 http://dx.doi.org/10.1038/nature09163
JUAN M L , GORDON R , PANG Y J , et al . Self-induced back-action optical trapping of dielectric nanoparticles [J]. Nature Physics , 2009 , 5 ( 12 ): 915 - 919 . doi: 10.1038/nphys1422 http://dx.doi.org/10.1038/nphys1422
KAUFMAN A M , LESTER B J , REYNOLDS C M , et al . Two-particle quantum interference in tunnel-coupled optical tweezers [J]. Science , 2014 , 345 ( 6194 ): 306 - 309 . doi: 10.1126/science.1250057 http://dx.doi.org/10.1126/science.1250057
WATTS R N , LETT P D , WESTBROOK C I , et al . Observation of atoms laser-cooled below the Doppler limit [C]. in International Conference on Quantum Electronics , H . Inaba, T. Yajima , and T . Ikegami, eds. , OSA Technical Digest, 1988 : PD1 . doi: 10.1103/physrevlett.61.169 http://dx.doi.org/10.1103/physrevlett.61.169
COHEN-TANNOUDJI C N , PHILLIPS W D . New mechanisms for laser cooling [J]. Physics Today , 1990 , 43 ( 10 ): 33 - 40 . doi: 10.1063/1.881239 http://dx.doi.org/10.1063/1.881239
ASHKIN A . Optical trapping and manipulation of neutral particles using lasers [J]. Proceedings of the National Academy of Sciences of the United States of America , 1997 , 94 ( 10 ): 4853 - 4860 . doi: 10.1073/pnas.94.10.4853 http://dx.doi.org/10.1073/pnas.94.10.4853
GRIGORENKO A N , ROBERTS N W , DICKINSON M R , et al . Nanometric optical tweezers based on nanostructured substrates [J]. Nature Photonics , 2008 , 2 ( 6 ): 365 - 370 . doi: 10.1038/nphoton.2008.78 http://dx.doi.org/10.1038/nphoton.2008.78
ZHENG Y , RYAN J , HANSEN P , et al . Nano-optical conveyor belt, part II: demonstration of handoff between near-field optical traps [J]. Nano Letters , 2014 , 14 ( 6 ): 2971 - 2976 . doi: 10.1021/nl404045n http://dx.doi.org/10.1021/nl404045n
YANG A H J , MOORE S D , SCHMIDT B S , et al . Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides [J]. Nature , 2009 , 457 ( 7225 ): 71 - 75 . doi: 10.1038/nature07593 http://dx.doi.org/10.1038/nature07593
SHI Y Z , WU Y F , CHIN L K , et al . Multifunctional virus manipulation with large‐scale arrays of all‐dielectric resonant nanocavities [J]. Laser & Photonics Reviews , 2022 , 16 ( 5 ): 2100197 . doi: 10.1002/lpor.202100197 http://dx.doi.org/10.1002/lpor.202100197
ČIŽMÁR T , ŠILER M , ŠERÝ M , et al . Optical sorting and detection of submicrometer objects in a motional standing wave [J]. Physical Review B , 2006 , 74 ( 3 ): 035105 . doi: 10.1103/physrevb.74.035105 http://dx.doi.org/10.1103/physrevb.74.035105
PANG Y J , SONG H N , KIM J H , et al . Optical trapping of individual human immunodeficiency viruses in culture fluid reveals heterogeneity with single-molecule resolution [J]. Nature Nanotechnology , 2014 , 9 ( 8 ): 624 - 630 . doi: 10.1038/nnano.2014.140 http://dx.doi.org/10.1038/nnano.2014.140
ZHANG T H , MAHDY M R C , LIU Y M , et al . All-optical chirality-sensitive sorting via reversible lateral forces in interference fields [J]. ACS Nano , 2017 , 11 ( 4 ): 4292 - 4300 . doi: 10.1021/acsnano.7b01428 http://dx.doi.org/10.1021/acsnano.7b01428
HAYAT A , MUELLER J P B , CAPASSO F . Lateral chirality-sorting optical forces [J]. Proceedings of the National Academy of Sciences of the United States of America , 2015 , 112 ( 43 ): 13190 - 13194 . doi: 10.1073/pnas.1516704112 http://dx.doi.org/10.1073/pnas.1516704112
WANG S B , CHAN C T . Lateral optical force on chiral particles near a surface [J]. Nature Communications , 2014 , 5 : 3307 . doi: 10.1038/ncomms4307 http://dx.doi.org/10.1038/ncomms4307
BLIOKH K Y , BEKSHAEV A Y , NORI F . Extraordinary momentum and spin in evanescent waves [J]. Nature Communications , 2014 , 5 : 3300 . doi: 10.1038/ncomms4300 http://dx.doi.org/10.1038/ncomms4300
BEKSHAEV A Y , BLIOKH K Y , NORI F . Transverse spin and momentum in two-wave interference [J]. Physical Review X , 2015 , 5 : 011039 . doi: 10.1103/physrevx.5.011039 http://dx.doi.org/10.1103/physrevx.5.011039
EISMANN J S , NICHOLLS L H , ROTH D J , et al . Transverse spinning of unpolarized light [J]. Nature Photonics , 2021 , 15 ( 2 ): 156 - 161 . doi: 10.1038/s41566-020-00733-3 http://dx.doi.org/10.1038/s41566-020-00733-3
ZHU J M , ZHU X Q , ZUO Y F , et al . Optofluidics: the interaction between light and flowing liquids in integrated devices [J]. Opto-Electronic Advances , 2019 , 2 ( 11 ): 1 - 10 . doi: 10.29026/oea.2019.190007 http://dx.doi.org/10.29026/oea.2019.190007
HOREJS C M . Optofluidics: You never hop alone [J]. Nature Reviews Materials , 2018 , 3 : 18011 . doi: 10.1038/natrevmats.2018.11 http://dx.doi.org/10.1038/natrevmats.2018.11
FAN X D , WHITE I M . Optofluidic microsystems for chemical and biological analysis [J]. Nature Photonics , 2011 , 5 ( 10 ): 591 - 597 . doi: 10.1038/nphoton.2011.206 http://dx.doi.org/10.1038/nphoton.2011.206
PSALTIS D , QUAKE S R , YANG C . Developing optofluidic technology through the fusion of microfluidics and optics [J]. Nature , 2006 , 442 ( 7101 ): 381 - 386 . doi: 10.1038/nature05060 http://dx.doi.org/10.1038/nature05060
WU W , ZHU X Q , ZUO Y F , et al . Precise sorting of gold nanoparticles in a flowing system [J]. ACS Photonics , 2016 , 3 ( 12 ): 2497 - 2504 . doi: 10.1021/acsphotonics.6b00737 http://dx.doi.org/10.1021/acsphotonics.6b00737
LI H , CAO Y Y , ZHOU L M , et al . Optical pulling forces and their applications [J]. Advances in Optics and Photonics , 2020 , 12 ( 2 ): 288 - 366 . doi: 10.1364/aop.378390 http://dx.doi.org/10.1364/aop.378390
SHI Y Z , ZHU T T , NGUYEN K T , et al . Optofluidic microengine in A dynamic flow environment via self-induced back-action [J]. ACS Photonics , 2020 , 7 ( 6 ): 1500 - 1507 . doi: 10.1021/acsphotonics.0c00295 http://dx.doi.org/10.1021/acsphotonics.0c00295
SVOBODA K , BLOCK S M . Optical trapping of metallic Rayleigh particles [J]. Optics Letters , 1994 , 19 ( 13 ): 930 - 932 . doi: 10.1364/ol.19.000930 http://dx.doi.org/10.1364/ol.19.000930
NIETO-VESPERINAS M , SÁENZ J J , GÓMEZ-MEDINA R , et al . Optical forces on small magnetodielectric particles [J]. Optics Express , 2010 , 18 ( 11 ): 11428 - 11443 . doi: 10.1364/oe.18.011428 http://dx.doi.org/10.1364/oe.18.011428
MELZER J E and MCLEOD E . Fundamental Limits of Optical Tweezer Nanoparticle Manipulation Speeds [J]. ACS Nano , 2018 , 12 ( 3 ): 2440 - 2447 . doi: 10.1021/acsnano.7b07914 http://dx.doi.org/10.1021/acsnano.7b07914
SHI Y Z , XIONG S , CHIN L K , et al . Nanometer-precision linear sorting with synchronized optofluidic dual barriers [J]. Science Advances , 2018 , 4 ( 1 ): eaao0773 . doi: 10.1126/sciadv.aao0773 http://dx.doi.org/10.1126/sciadv.aao0773
CALLEGARI A , MIJALKOV M , GÖKÖZ A B , et al . Computational toolbox for optical tweezers in geometrical optics [J]. JOSA B , 2015 , 32 ( 5 ): B11 - B19 . doi: 10.1364/josab.32.000b11 http://dx.doi.org/10.1364/josab.32.000b11
CHANG Y R , HSU L , CHI S E . Optical trapping of a spherically symmetric sphere in the ray-optics regime: a model for optical tweezers upon cells [J]. Applied Optics , 2006 , 45 ( 16 ): 3885 - 3892 . doi: 10.1364/ao.45.003885 http://dx.doi.org/10.1364/ao.45.003885
SHI Y Z , ZHAO H T , NGUYEN K T , et al . Nanophotonic array-induced dynamic behavior for label-free shape-selective bacteria sieving [J]. ACS Nano , 2019 , 13 ( 10 ): 12070 - 12080 . doi: 10.1021/acsnano.9b06459 http://dx.doi.org/10.1021/acsnano.9b06459
CHIN L K , SHI Y Z , LIU A Q . Optical forces in silicon nanophotonics and optomechanical systems: science and applications [J]. Advanced Devices & Instrumentation , 2020 , 2020 : 1 - 14 . doi: 10.34133/2020/1964015 http://dx.doi.org/10.34133/2020/1964015
CHEN J , NG J , LIN Z F , et al . Optical pulling force [J]. Nature Photonics , 2011 , 5 ( 9 ): 531 - 534 . doi: 10.1038/nphoton.2011.153 http://dx.doi.org/10.1038/nphoton.2011.153
ZHONG M C , WEI X B , ZHOU J H , et al . Trapping red blood cells in living animals using optical tweezers [J]. Nature Communications , 2013 , 4 : 1768 . doi: 10.1038/ncomms2786 http://dx.doi.org/10.1038/ncomms2786
FAVRE-BULLE I A , STILGOE A B , RUBINSZTEIN-DUNLOP H , et al . Optical trapping of otoliths drives vestibular behaviours in larval zebrafish [J]. Nature Communications , 2017 , 8 : 630 . doi: 10.1038/s41467-017-00713-2 http://dx.doi.org/10.1038/s41467-017-00713-2
SUDHAKAR S , ABDOSAMADI M K , JACHOWSKI T J , et al . Germanium nanospheres for ultraresolution picotensiometry of kinesin motors [J]. Science , 2021 , 371 ( 6530 ): eabd9944 . doi: 10.1126/science.abd9944 http://dx.doi.org/10.1126/science.abd9944
COMSTOCK M J , WHITLEY K D , JIA H F , et al . Protein structure. Direct observation of structure-function relationship in a nucleic acid-processing enzyme [J]. Science , 2015 , 348 ( 6232 ): 352 - 354 . doi: 10.1126/science.aaa0130 http://dx.doi.org/10.1126/science.aaa0130
WANG M D , YIN H , LANDICK R , et al . Stretching DNA with optical tweezers [J]. BioPhysical Journal , 1997 , 72 ( 3 ): 1335 - 1346 . doi: 10.1016/s0006-3495(97)78780-0 http://dx.doi.org/10.1016/s0006-3495(97)78780-0
HELLER I , SITTERS G , BROEKMANS O D , et al . STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA (presentation video) [C]. SPIE NanoScience + Engineering. Proc SPIE 9164, Optical Trapping and Optical Micromanipulation XI , San Diego, California, USA . 2014 , 9164 : 174 . doi: 10.1117/12.2062819 http://dx.doi.org/10.1117/12.2062819
GORE J , BRYANT Z , NÖLLMANN M , et al . DNA overwinds when stretched [J]. Nature , 2006 , 442 ( 7104 ): 836 - 839 . doi: 10.1038/nature04974 http://dx.doi.org/10.1038/nature04974
SOLTANI M , LIN J , FORTIES R A , et al . Nanophotonic trapping for precise manipulation of biomolecular arrays [J]. Nature Nanotechnology , 2014 , 9 ( 6 ): 448 - 452 . doi: 10.1038/nnano.2014.79 http://dx.doi.org/10.1038/nnano.2014.79
CURTIS J E , KOSS B A , GRIER D G . Dynamic holographic optical tweezers [J]. Optics Communications , 2002 , 207 ( 1/2/3/4/5/6 ): 169 - 175 . doi: 10.1016/s0030-4018(02)01524-9 http://dx.doi.org/10.1016/s0030-4018(02)01524-9
LEACH J , SINCLAIR G , JORDAN P , et al . 3D manipulation of particles into crystal structures using holographic optical tweezers [J]. Optics Express , 2004 , 12 ( 1 ): 220 - 226 . doi: 10.1364/opex.12.000220 http://dx.doi.org/10.1364/opex.12.000220
DUFRESNE E R , SPALDING G C , DEARING M T , et al . Computer-generated holographic optical tweezer arrays [J]. Review of Scientific Instruments , 2001 , 72 ( 3 ): 1810 - 1816 . doi: 10.1063/1.1344176 http://dx.doi.org/10.1063/1.1344176
GRIER D G , ROICHMAN Y . Holographic optical trapping [J]. Applied Optics , 2006 , 45 ( 5 ): 880 - 887 . doi: 10.1364/ao.45.000880 http://dx.doi.org/10.1364/ao.45.000880
LIANG Y S , YAN S H , WANG Z J , et al . Simultaneous optical trapping and imaging in the axial plane: a review of current progress [J]. Reports on Progress in Physics Physical Society (Great Britain) , 2020 , 83 ( 3 ): 032401 . doi: 10.1088/1361-6633/ab7175 http://dx.doi.org/10.1088/1361-6633/ab7175
CAI Y N , YAN S H , WANG Z J , et al . Rapid tilted-plane Gerchberg-Saxton algorithm for holographic optical tweezers [J]. Optics Express , 2020 , 28 ( 9 ): 12729 - 12739 . doi: 10.1364/oe.389897 http://dx.doi.org/10.1364/oe.389897
LIANG Y S , CAI Y N , WANG Z J , et al . Aberration correction in holographic optical tweezers using a high-order optical vortex [J]. Applied Optics , 2018 , 57 ( 13 ): 3618 - 3623 . doi: 10.1364/ao.57.003618 http://dx.doi.org/10.1364/ao.57.003618
SIVILOGLOU G A , BROKY J , DOGARIU A , et al . Observation of accelerating airy beams [J]. Physical Review Letters , 2007 , 99 ( 21 ): 213901 . doi: 10.1103/physrevlett.99.213901 http://dx.doi.org/10.1103/physrevlett.99.213901
BAUMGARTL J , MAZILU M , DHOLAKIA K . Optically mediated particle clearing using Airy wavepackets [J]. Nature Photonics , 2008 , 2 ( 11 ): 675 - 678 . doi: 10.1038/nphoton.2008.201 http://dx.doi.org/10.1038/nphoton.2008.201
JIANG Y F , HUANG K K , LU X H . Radiation force of abruptly autofocusing Airy beams on a Rayleigh particle [J]. Optics Express , 2013 , 21 ( 20 ): 24413 - 24421 . doi: 10.1364/oe.21.024413 http://dx.doi.org/10.1364/oe.21.024413
GARCÉS-CHÁVEZ V , MCGLOIN D , MELVILLE H , et al . Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam [J]. Nature , 2002 , 419 ( 6903 ): 145 - 147 . doi: 10.1038/nature01007 http://dx.doi.org/10.1038/nature01007
MILNE G , DHOLAKIA K , MCGLOIN D , et al . Transverse particle dynamics in a Bessel beam [J]. Optics Express , 2007 , 15 ( 21 ): 13972 - 13987 . doi: 10.1364/oe.15.013972 http://dx.doi.org/10.1364/oe.15.013972
CURTIS J E , GRIER D G . Structure of optical vortices [J]. Physical Review Letters , 2003 , 90 ( 13 ): 133901 . doi: 10.1103/physrevlett.90.133901 http://dx.doi.org/10.1103/physrevlett.90.133901
NG J , LIN Z F , CHAN C T . Theory of optical trapping by an optical vortex beam [J]. Physical Review Letters , 2010 , 104 ( 10 ): 103601 . doi: 10.1103/physrevlett.104.103601 http://dx.doi.org/10.1103/physrevlett.104.103601
PADGETT M , BOWMAN R . Tweezers with a twist [J]. Nature Photonics , 2011 , 5 ( 6 ): 343 - 348 . doi: 10.1038/nphoton.2011.81 http://dx.doi.org/10.1038/nphoton.2011.81
SHEN Y J , WANG X J , XIE Z W , et al . Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities [J]. Light: Science & Applications , 2019 , 8 : 90 . doi: 10.1038/s41377-019-0194-2 http://dx.doi.org/10.1038/s41377-019-0194-2
JAQUAY E , MARTÍNEZ L J , MEJIA C A , et al . Light-assisted, templated self-assembly using a photonic-crystal slab [J]. Nano Letters , 2013 , 13 ( 5 ): 2290 - 2294 . doi: 10.1021/nl400918x http://dx.doi.org/10.1021/nl400918x
JAQUAY E , MARTÍNEZ L J , HUANG N F , et al . Light-assisted, templated self-assembly of gold nanoparticle chains [J]. Nano Letters , 2014 , 14 ( 9 ): 5184 - 5188 . doi: 10.1021/nl502083m http://dx.doi.org/10.1021/nl502083m
MANDAL S , SEREY X and ERICKSON D . Nanomanipulation Using Silicon Photonic Crystal Resonators [J]. Nano Letters , 2010 , 10 ( 1 ): 99 - 104 . doi: 10.1021/nl9029225 http://dx.doi.org/10.1021/nl9029225
ZHANG Y Q , MIN C J , DOU X J , et al . Plasmonic tweezers: for nanoscale optical trapping and beyond [J]. Light: Science & Applications , 2021 , 10 : 59 . doi: 10.1038/s41377-021-00474-0 http://dx.doi.org/10.1038/s41377-021-00474-0
JUAN M L , RIGHINI M , QUIDANT R . Plasmon nano-optical tweezers [J]. Nature Photonics , 2011 , 5 ( 6 ): 349 - 356 . doi: 10.1038/nphoton.2011.56 http://dx.doi.org/10.1038/nphoton.2011.56
RIGHINI M , GHENUCHE P , CHERUKULAPPURATH S , et al . Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas [J]. Nano Letters , 2009 , 9 ( 10 ): 3387 - 3391 . doi: 10.1021/nl803677x http://dx.doi.org/10.1021/nl803677x
CROZIER K B . Quo vadis, plasmonic optical tweezers? [J]. Light: Science & Applications , 2019 , 8 : 35 . doi: 10.1038/s41377-019-0146-x http://dx.doi.org/10.1038/s41377-019-0146-x
LI Y C , XIN H B , ZHANG Y , et al . Living nanospear for near-field optical probing [J]. ACS Nano , 2018 , 12 ( 11 ): 10703 - 10711 . doi: 10.1021/acsnano.8b05235 http://dx.doi.org/10.1021/acsnano.8b05235
ZHAO X T , ZHAO N , SHI Y , et al . Optical fiber tweezers: a versatile tool for optical trapping and manipulation [J]. Micromachines , 2020 , 11 ( 2 ): 114 . doi: 10.3390/mi11020114 http://dx.doi.org/10.3390/mi11020114
XIN H B , ZHAO N , WANG Y N , et al . Optically controlled living micromotors for the manipulation and disruption of biological targets [J]. Nano Letters , 2020 , 20 ( 10 ): 7177 - 7185 . doi: 10.1021/acs.nanolett.0c02501 http://dx.doi.org/10.1021/acs.nanolett.0c02501
LI Y C , LIU X S , LI B J . Single-cell biomagnifier for optical nanoscopes and nanotweezers [J]. Light: Science & Applications , 2019 , 8 : 61 . doi: 10.1038/s41377-019-0168-4 http://dx.doi.org/10.1038/s41377-019-0168-4
LU J S , YANG H B , ZHOU L N , et al . Light-induced pulling and pushing by the synergic effect of optical force and photophoretic force [J]. Physical Review Letters , 2017 , 118 ( 4 ): 043601 . doi: 10.1103/physrevlett.118.043601 http://dx.doi.org/10.1103/physrevlett.118.043601
GONG L P , ZHANG X H , GU B , et al . Optical pulling forces on Rayleigh particles using ambient optical nonlinearity [J]. Nanophotonics , 2019 , 8 ( 6 ): 1117 - 1124 . doi: 10.1515/nanoph-2019-0095 http://dx.doi.org/10.1515/nanoph-2019-0095
LEPESHOV S , KRASNOK A . Virtual optical pulling force [J]. Optica , 2020 , 7 ( 8 ): 1024 - 1030 . doi: 10.1364/optica.391569 http://dx.doi.org/10.1364/optica.391569
JIN R C , XU Y H , DONG Z G , et al . Optical pulling forces enabled by hyperbolic metamaterials [J]. Nano Letters , 2021 , 21 ( 24 ): 10431 - 10437 . doi: 10.1021/acs.nanolett.1c03772 http://dx.doi.org/10.1021/acs.nanolett.1c03772
LEE E , LUO T . Long-distance optical pulling of nanoparticle in a low index cavity using a single plane wave [J]. Science Advances , 2020 , 6 ( 21 ): eaaz3646 . doi: 10.1126/sciadv.aaz3646 http://dx.doi.org/10.1126/sciadv.aaz3646
WANG N , LU W L , NG J , et al . Optimized optical “tractor beam” for core-shell nanoparticles [J]. Optics Letters , 2014 , 39 ( 8 ): 2399 - 2402 . doi: 10.1364/ol.39.002399 http://dx.doi.org/10.1364/ol.39.002399
DOGARIU A , SUKHOV S , SÁENZ J . Optically induced ‘negative forces’ [J]. Nature Photonics , 2013 , 7 ( 1 ): 24 - 27 . doi: 10.1038/nphoton.2012.315 http://dx.doi.org/10.1038/nphoton.2012.315
KAJORNDEJNUKUL V , DING W Q , SUKHOV S , et al . Linear momentum increase and negative optical forces at dielectric interface [J]. Nature Photonics , 2013 , 7 ( 10 ): 787 - 790 . doi: 10.1038/nphoton.2013.192 http://dx.doi.org/10.1038/nphoton.2013.192
HONG C C , YANG S , NDUKAIFE J C . Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers [J]. Nature Nanotechnology , 2020 , 15 ( 11 ): 908 - 913 . doi: 10.1038/s41565-020-0760-z http://dx.doi.org/10.1038/s41565-020-0760-z
NDUKAIFE J C , KILDISHEV A V , NNANNA A G A , et al . Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer [J]. Nature Nanotechnology , 2016 , 11 ( 1 ): 53 - 59 . doi: 10.1038/nnano.2015.248 http://dx.doi.org/10.1038/nnano.2015.248
NDUKAIFE J C , XUAN Y , NNANNA A G A , et al . High-Resolution Large-Ensemble Nanoparticle Trapping with Multifunctional Thermoplasmonic Nanohole Metasurface [J]. ACS Nano , 2018 , 12 ( 6 ): 5376 - 5384 . doi: 10.1021/acsnano.8b00318 http://dx.doi.org/10.1021/acsnano.8b00318
WANG X Y , YUAN Y Q , XIE X , et al . Graphene-based opto-thermoelectric tweezers [J]. Advanced Materials , 2022 , 34 ( 8 ): 2107691 . doi: 10.1002/adma.202107691 http://dx.doi.org/10.1002/adma.202107691
MIN C J , SHEN Z , SHEN J F , et al . Focused plasmonic trapping of metallic particles [J]. Nature Communications , 2013 , 4 : 2891 . doi: 10.1038/ncomms3891 http://dx.doi.org/10.1038/ncomms3891
ZHANG Y Q , SHEN J F , MIN C J , et al . Nonlinearity-induced multiplexed optical trapping and manipulation with femtosecond vector beams [J]. Nano Letters , 2018 , 18 ( 9 ): 5538 - 5543 . doi: 10.1021/acs.nanolett.8b01929 http://dx.doi.org/10.1021/acs.nanolett.8b01929
ZHANG W J , ZHANG Y Q , ZHANG S S , et al . Nonlinear modulation on optical trapping in a plasmonic bowtie structure [J]. Optics Express , 2021 , 29 ( 8 ): 11664 - 11673 . doi: 10.1364/oe.422493 http://dx.doi.org/10.1364/oe.422493
CAMERON R P , BARNETT S M , YAO A M . Discriminatory optical force for chiral molecules [J]. New Journal of Physics , 2014 , 16 ( 1 ): 013020 . doi: 10.1088/1367-2630/16/1/013020 http://dx.doi.org/10.1088/1367-2630/16/1/013020
DING K , NG J , ZHOU L , et al . Realization of optical pulling forces using chirality [J]. Physical Review A , 2014 , 89 ( 6 ): 063825 . doi: 10.1103/physreva.89.063825 http://dx.doi.org/10.1103/physreva.89.063825
TKACHENKO G , BRASSELET E . Optofluidic sorting of material chirality by chiral light [J]. Nature Communications , 2014 , 5 : 3577 . doi: 10.1038/ncomms4577 http://dx.doi.org/10.1038/ncomms4577
SHI Y Z , ZHU T T , ZHANG T H , et al . Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation [J]. Light: Science & Applications , 2020 , 9 : 62 . doi: 10.1038/s41377-020-0293-0 http://dx.doi.org/10.1038/s41377-020-0293-0
FANG L , WANG J . Optical trapping separation of chiral nanoparticles by subwavelength slot waveguides [J]. Physical Review Letters , 2021 , 127 ( 23 ): 233902 . doi: 10.1103/physrevlett.127.233902 http://dx.doi.org/10.1103/physrevlett.127.233902
CHEN H J , JIANG Y K , WANG N , et al . Lateral optical force on paired chiral nanoparticles in linearly polarized plane waves [J]. Optics Letters , 2015 , 40 ( 23 ): 5530 - 5533 . doi: 10.1364/ol.40.005530 http://dx.doi.org/10.1364/ol.40.005530
RODRÍGUEZ-FORTUÑO F J , ENGHETA N , MARTÍNEZ A , et al . Lateral forces on circularly polarizable particles near a surface [J]. Nature Communications , 2015 , 6 : 8799 . doi: 10.1038/ncomms9799 http://dx.doi.org/10.1038/ncomms9799
ZHU T T , SHI Y Z , DING W Q , et al . Extraordinary multipole modes and ultra-enhanced optical lateral force by chirality [J]. Physical Review Letters , 2020 , 125 ( 4 ): 043901 . doi: 10.1103/physrevlett.125.043901 http://dx.doi.org/10.1103/physrevlett.125.043901
ZHANG Q , LI J Q , LIU X G . Optical lateral forces and torques induced by chiral surface-plasmon-polaritons and their potential applications in recognition and separation of chiral enantiomers [J]. Physical Chemistry Chemical Physics , 2019 , 21 ( 3 ): 1308 - 1314 . doi: 10.1039/c8cp06197a http://dx.doi.org/10.1039/c8cp06197a
SHAN X C , WANG F , WANG D J , et al . Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles [J]. Nature Nanotechnology , 2021 , 16 ( 5 ): 531 - 537 . doi: 10.1038/s41565-021-00852-0 http://dx.doi.org/10.1038/s41565-021-00852-0
PENG X L , CHEN Z H , KOLLIPARA P S , et al . Opto-thermoelectric microswimmers [J]. Light: Science & Applications , 2020 , 9 : 141 . doi: 10.1038/s41377-020-00378-5 http://dx.doi.org/10.1038/s41377-020-00378-5
SHVEDOV V , DAVOYAN A R , HNATOVSKY C , et al . A long-range polarization-controlled optical tractor beam [J]. Nature Photonics , 2014 , 8 ( 11 ): 846 - 850 . doi: 10.1038/nphoton.2014.242 http://dx.doi.org/10.1038/nphoton.2014.242
SHI Y Z , ZHOU L M , LIU A Q , et al . Superhybrid mode-enhanced optical torques on Mie-resonant particles [J]. Nano Letters , 2022 , 22 ( 4 ): 1769 - 1777 . doi: 10.1021/acs.nanolett.2c00050 http://dx.doi.org/10.1021/acs.nanolett.2c00050
MIZRAHI A , FAINMAN Y . Negative radiation pressure on gain medium structures [J]. Optics Letters , 2010 , 35 ( 20 ): 3405 - 3407 . doi: 10.1364/ol.35.003405 http://dx.doi.org/10.1364/ol.35.003405
POLIMENO P , PATTI F , INFUSINO M , et al . Gain-assisted optomechanical position locking of metal/dielectric nanoshells in optical potentials [J]. ACS Photonics , 2020 , 7 ( 5 ): 1262 - 1270 . doi: 10.1021/acsphotonics.0c00213 http://dx.doi.org/10.1021/acsphotonics.0c00213
LEE Y E , FUNG K H , JIN D F , et al . Optical torque from enhanced scattering by multipolar plasmonic resonance [J]. Nanophotonics , 2014 , 3 ( 6 ): 343 - 350 . doi: 10.1515/nanoph-2014-0005 http://dx.doi.org/10.1515/nanoph-2014-0005
LIU M , ZENTGRAF T , LIU Y M , et al . Light-driven nanoscale plasmonic motors [J]. Nature Nanotechnology , 2010 , 5 ( 8 ): 570 - 573 . doi: 10.1038/nnano.2010.128 http://dx.doi.org/10.1038/nnano.2010.128
NEDEV S , CARRETERO-PALACIOS S , KÜHLER P , et al . An optically controlled microscale elevator using plasmonic Janus particles [J]. ACS Photonics , 2015 , 2 ( 4 ): 491 - 496 . doi: 10.1021/ph500371z http://dx.doi.org/10.1021/ph500371z
GAO X Q , ZHAI C , LIN Z Z , et al . Simulation and experiment of the trapping trajectory for Janus particles in linearly polarized optical traps [J]. Micromachines , 2022 , 13 ( 4 ): 608 . doi: 10.3390/mi13040608 http://dx.doi.org/10.3390/mi13040608
LIU J , LI Z Y . Controlled mechanical motions of microparticles in optical tweezers [J]. Micromachines , 2018 , 9 ( 5 ): 232 . doi: 10.3390/mi9050232 http://dx.doi.org/10.3390/mi9050232
ANDRÉN D , BARANOV D G , JONES S , et al . Microscopic metavehicles powered and steered by embedded optical metasurfaces [J]. Nature Nanotechnology , 2021 , 16 ( 9 ): 970 - 974 . doi: 10.1038/s41565-021-00941-0 http://dx.doi.org/10.1038/s41565-021-00941-0
ZHANG S L , ELSAYED M , PENG R , et al . Reconfigurable multi-component micromachines driven by optoelectronic tweezers [J]. Nature Communications , 2021 , 12 : 5349 . doi: 10.1038/s41467-021-25582-8 http://dx.doi.org/10.1038/s41467-021-25582-8
ZHANG S L , SCOTT E Y , SINGH J , et al . The optoelectronic microrobot: a versatile toolbox for micromanipulation [J]. Proceedings of the National Academy of Sciences of the United States of America , 2019 , 116 ( 30 ): 14823 - 14828 . doi: 10.1073/pnas.1903406116 http://dx.doi.org/10.1073/pnas.1903406116
JÁKL P , ČIŽMÁR T , ŠERÝ M , et al . Static optical sorting in a laser interference field [J]. Applied Physics Letters , 2008 , 92 ( 16 ): 161110 . doi: 10.1063/1.2913759 http://dx.doi.org/10.1063/1.2913759
PIN C , OTSUKA R , SASAKI K . Optical transport and sorting of fluorescent nanodiamonds inside a tapered glass capillary: optical sorting of nanomaterials at the femtonewton scale [J]. ACS Applied Nano Materials , 2020 , 3 ( 5 ): 4127 - 4134 . doi: 10.1021/acsanm.0c00274 http://dx.doi.org/10.1021/acsanm.0c00274
ZHANG Y , LI B J . Particle sorting using a subwavelength optical fiber [J]. Laser & Photonics Reviews , 2013 , 7 ( 2 ): 289 - 296 . doi: 10.1002/lpor.201200087 http://dx.doi.org/10.1002/lpor.201200087
PLOSCHNER M , ČIŽMÁR T , MAZILU M , et al . Bidirectional optical sorting of gold nanoparticles [J]. Nano Letters , 2012 , 12 ( 4 ): 1923 - 1927 . doi: 10.1021/nl204378r http://dx.doi.org/10.1021/nl204378r
MACDONALD M P , SPALDING G C , DHOLAKIA K . Microfluidic sorting in an optical lattice [J]. Nature , 2003 , 426 ( 6965 ): 421 - 424 . doi: 10.1038/nature02144 http://dx.doi.org/10.1038/nature02144
WANG M M , TU E , RAYMOND D E , et al . Microfluidic sorting of mammalian cells by optical force switching [J]. Nature Biotechnology , 2005 , 23 ( 1 ): 83 - 87 . doi: 10.1038/nbt1050 http://dx.doi.org/10.1038/nbt1050
SHI Y Z , XIONG S , ZHANG Y , et al . Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement [J]. Nature Communications , 2018 , 9 : 815 . doi: 10.1038/s41467-018-03156-5 http://dx.doi.org/10.1038/s41467-018-03156-5
NAN F , YAN Z J . Creating multifunctional optofluidic potential wells for nanoparticle manipulation [J]. Nano Letters , 2018 , 18 ( 11 ): 7400 - 7406 . doi: 10.1021/acs.nanolett.8b03844 http://dx.doi.org/10.1021/acs.nanolett.8b03844
SHI Y Z , ZHAO H T , CHIN L K , et al . Optical potential-well array for high-selectivity, massive trapping and sorting at nanoscale [J]. Nano Letters , 2020 , 20 ( 7 ): 5193 - 5200 . doi: 10.1021/acs.nanolett.0c01464 http://dx.doi.org/10.1021/acs.nanolett.0c01464
KÜHN S , PHILLIPS B S , LUNT E J , et al . Ultralow power trapping and fluorescence detection of single particles on an optofluidic chip [J]. Lab on a Chip , 2010 , 10 ( 2 ): 189 - 194 . doi: 10.1039/b915750f http://dx.doi.org/10.1039/b915750f
VAN LEEST T , CARO J . Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal [J]. Lab on a Chip , 2013 , 13 ( 22 ): 4358 - 4365 . doi: 10.1039/c3lc50879j http://dx.doi.org/10.1039/c3lc50879j
DESCHARMES N , DHARANIPATHY U P , DIAO Z L , et al . Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals [J]. Lab on a Chip , 2013 , 13 ( 16 ): 3268 - 3274 . doi: 10.1039/c3lc50447f http://dx.doi.org/10.1039/c3lc50447f
THERISOD R , TARDIF M , MARCOUX P R , et al . Gram-type differentiation of bacteria with 2D hollow photonic crystal cavities [J]. Applied Physics Letters , 2018 , 113 ( 11 ): 111101 . doi: 10.1063/1.5037849 http://dx.doi.org/10.1063/1.5037849
PANG Y J , SONG H N , CHENG W . Using optical trap to measure the refractive index of a single animal virus in culture fluid with high precision [J]. Biomedical Optics Express , 2016 , 7 ( 5 ): 1672 . doi: 10.1364/boe.7.001672 http://dx.doi.org/10.1364/boe.7.001672
KANG P , SCHEIN P , SEREY X , et al . Nanophotonic detection of freely interacting molecules on a single influenza virus [J]. Scientific Reports , 2015 , 5 : 12087 . doi: 10.1038/srep12087 http://dx.doi.org/10.1038/srep12087
SHI Y Z , NGUYEN K T , CHIN L K , et al . Trapping and detection of single viruses in an optofluidic chip [J]. ACS Sensors , 2021 , 6 ( 9 ): 3445 - 3450 . doi: 10.1021/acssensors.1c01350 http://dx.doi.org/10.1021/acssensors.1c01350
KRAVETS N , ALEKSANYAN A , BRASSELET E . Chiral optical stern-Gerlach Newtonian experiment [J]. Physical Review Letters , 2019 , 122 ( 2 ): 024301 . doi: 10.1103/physrevlett.122.024301 http://dx.doi.org/10.1103/physrevlett.122.024301
TKACHENKO G , BRASSELET E . Helicity-dependent three-dimensional optical trapping of chiral microparticles [J]. Nature Communications , 2014 , 5 : 4491 . doi: 10.1038/ncomms5491 http://dx.doi.org/10.1038/ncomms5491
ZHAO Y , SALEH A A E , VAN DE HAAR M A , et al . Nanoscopic control and quantification of enantioselective optical forces [J]. Nature Nanotechnology , 2017 , 12 ( 11 ): 1055 - 1059 . doi: 10.1038/nnano.2017.180 http://dx.doi.org/10.1038/nnano.2017.180
WANG X L , CHEN J , LI Y N , et al . Optical orbital angular momentum from the curl of polarization [J]. Physical Review Letters , 2010 , 105 ( 25 ): 253602 . doi: 10.1103/physrevlett.105.253602 http://dx.doi.org/10.1103/physrevlett.105.253602
BLIOKH K Y , RODRÍGUEZ-FORTUÑO F J , NORI F , et al . Spin-orbit interactions of light [J]. Nature Photonics , 2015 , 9 ( 12 ): 796 - 808 . doi: 10.1038/nphoton.2015.201 http://dx.doi.org/10.1038/nphoton.2015.201
SUKHOV S , KAJORNDEJNUKUL V , NARAGHI R R , et al . Dynamic consequences of optical spin-orbit interaction [J]. Nature Photonics , 2015 , 9 ( 12 ): 809 - 812 . doi: 10.1038/nphoton.2015.200 http://dx.doi.org/10.1038/nphoton.2015.200
ROICHMAN Y , SUN B , ROICHMAN Y , et al . Optical forces arising from phase gradients [J]. Physical Review Letters , 2008 , 100 : 013602 . doi: 10.1103/physrevlett.100.013602 http://dx.doi.org/10.1103/physrevlett.100.013602
PATERSON L , MACDONALD M P , ARLT J , et al . Controlled rotation of optically trapped microscopic particles [J]. Science , 2001 , 292 ( 5518 ): 912 - 914 . doi: 10.1126/science.1058591 http://dx.doi.org/10.1126/science.1058591
RAKTIM D , MOHANTY S K , GUPTA P K . Controlled rotation of biological microscopic objects using optical line tweezers [J]. Biotechnology Letters , 2003 , 25 ( 19 ): 1625 - 1628 .
CAO B , KELBAUSKAS L , CHAN S , et al . Rotation of single live mammalian cells using dynamic holographic optical tweezers [J]. Optics and Lasers in Engineering , 2017 , 92 : 70 - 75 . doi: 10.1016/j.optlaseng.2016.12.019 http://dx.doi.org/10.1016/j.optlaseng.2016.12.019
TONG L M , MILJKOVIĆ V D , KÄLL M . Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces [J]. Nano Letters , 2010 , 10 ( 1 ): 268 - 273 . doi: 10.1021/nl9034434 http://dx.doi.org/10.1021/nl9034434
REIMANN R , DODERER M , HEBESTREIT E , et al . GHz rotation of an optically trapped nanoparticle in vacuum [J]. Physical Review Letters , 2018 , 121 ( 3 ): 033602 . doi: 10.1103/physrevlett.121.033602 http://dx.doi.org/10.1103/physrevlett.121.033602
ARITA Y , MAZILU M , DHOLAKIA K . Laser-induced rotation and cooling of a trapped microgyroscope in vacuum [J]. Nature Communications , 2013 , 4 : 2374 . doi: 10.1038/ncomms3374 http://dx.doi.org/10.1038/ncomms3374
NIETO-VESPERINAS M . Optical torque on small bi-isotropic particles [J]. Optics Letters , 2015 , 40 ( 13 ): 3021 - 3024 . doi: 10.1364/ol.40.003021 http://dx.doi.org/10.1364/ol.40.003021
HAKOBYAN D , BRASSELET E . Left-handed optical radiation torque [J]. Nature Photonics , 2014 , 8 ( 8 ): 610 - 614 . doi: 10.1038/nphoton.2014.142 http://dx.doi.org/10.1038/nphoton.2014.142
CHEN J , NG J , DING K , et al . Negative optical torque [J]. Scientific Reports , 2014 , 4 : 6386 . doi: 10.1038/srep06386 http://dx.doi.org/10.1038/srep06386
JESACHER A , FÜRHAPTER S , MAURER C , et al . Reverse orbiting of microparticles in optical vortices [J]. Optics Letters , 2006 , 31 ( 19 ): 2824 - 2826 . doi: 10.1364/ol.31.002824 http://dx.doi.org/10.1364/ol.31.002824
SHI Y Z , ZHU T T , LIU A Q , et al . Inverse optical torques on dielectric nanoparticles in elliptically polarized light waves [J]. Physical Review Letters , 2022 , 129 ( 5 ): 053902 . doi: 10.1103/physrevlett.129.053902 http://dx.doi.org/10.1103/physrevlett.129.053902
WU M X , OUYANG Y S , WANG Z Y , et al . Isolation of exosomes from whole blood by integrating acoustics and microfluidics [J]. Proceedings of the National Academy of Sciences of the United States of America , 2017 , 114 ( 40 ): 10584 - 10589 . doi: 10.1073/pnas.1709210114 http://dx.doi.org/10.1073/pnas.1709210114
SHI Y Z , SONG Q H , TOFTUL I , et al . Optical manipulation with metamaterial structures [J]. Applied Physics Reviews , 2022 , 9 ( 3 ): 031303 . doi: 10.1063/5.0091280 http://dx.doi.org/10.1063/5.0091280
0
浏览量
904
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构