浏览全部资源
扫码关注微信
兰州理工大学 理学院,甘肃 兰州 730050
[ "王亚捷(1996-),男,甘肃天水人,硕士研究生,2016年于兰州理工大学获得学士学位,研究方向为导波光学及光纤通信技术。E-mail: 2971624377@qq.com" ]
[ "侯尚林(1970-),男,甘肃天水人,博士,教授,博士生导师,2008 年于北京邮电大学获得博士学位,主要从事新型光纤和高速光通信器件、下一代高速全光通信网络、光纤传感器件及网络方面研究。E-mail: houshanglin@163.com" ]
收稿日期:2022-04-11,
修回日期:2022-06-07,
纸质出版日期:2022-11-25
移动端阅览
王亚捷,侯尚林,雷景丽.C+L波段低损耗色散补偿19芯光子晶体光纤设计[J].光学精密工程,2022,30(22):2860-2868.
WANG Yajie,HOU Shanglin,LEI Jingli.Design of 19-core photonic crystal fiber with low loss dispersion compensation in C + L band[J].Optics and Precision Engineering,2022,30(22):2860-2868.
王亚捷,侯尚林,雷景丽.C+L波段低损耗色散补偿19芯光子晶体光纤设计[J].光学精密工程,2022,30(22):2860-2868. DOI: 10.37188/OPE.20223022.2860.
WANG Yajie,HOU Shanglin,LEI Jingli.Design of 19-core photonic crystal fiber with low loss dispersion compensation in C + L band[J].Optics and Precision Engineering,2022,30(22):2860-2868. DOI: 10.37188/OPE.20223022.2860.
为解决空分复用通信系统中多芯光纤色散积累的问题,本文利用光子晶体光纤灵活的色散可调性并结合多芯光纤提出了一种C+L波段低损耗色散补偿19芯光子晶体光纤。通过有限元法结合耦合模理论对该光纤色散、芯间串扰、限制损耗及弯曲损耗等各项光学性能进行了数值模拟。结果表明,该多芯光纤在C+L波段实现大负色散的同时,能显著抑制芯间串扰及限制损耗。该光纤在C+L波段内可实现介于
-
9 572~
-
13 633 ps/nm/km之间的大负色散及介于2.04×10
-
5
~8.1×10
-
3
dB/km之间的超低限制损耗。同时在C+L波段该光纤芯间串扰介于
-
88.96~
-
33.33 dB/100 km之间,并且弯曲损耗值满足ITU-T建议的G.654光纤在标准光纤尺寸下对19芯光子晶体光纤的要求。因此,该光纤可在基于空分复用技术的多芯光纤通信系统中发挥有效的色散补偿作用。
Dispersion accumulation is a problem experienced in space division multiplexing communication systems that use multi-core fibers. To solve this problem, use of a 19-core photonic crystal fiber (PCF) with low loss dispersion compensation in the C+L band is proposed as multi-core PCFs have flexible and tunable dispersion. The optical properties of the fiber, such as dispersion, inter-core crosstalk (XT), confinement loss, and bending loss are numerically simulated by the finite element method in combination with coupling mode theory. The results show that the multi-core fiber can significantly suppress XT and confinement loss, while achieving large negative dispersion in the C+L band. The fiber achieves a large negative dispersion of
-
9 572 ps/nm/km to
-
13 633 ps/nm/km and a low confinement loss of 2.04×10
-
5
dB/km to 8.1×10
-
3
dB/km in the C+L band. At the same time, the XT in the C+L band is between
-
88.96 dB/100 km and
-
33.33 dB/100 km, and the bend loss value meets the ITU-T recommendations of G.654 for 19-core PCFs with standard fiber sizes. Therefore, this fiber can play an effective role in dispersion compensation in multi-core fiber communication systems based on space division multiplexing technology.
QIAN D Y , HUANG M F , IP E , et al . High capacity/spectral efficiency 101.7-Tb/s WDM transmission using PDM-128QAM-OFDM over 165-km SSMF within C- and L-bands [J]. Journal of Lightwave Technology , 2012 , 30 ( 10 ): 1540 - 1548 . doi: 10.1109/jlt.2012.2189096 http://dx.doi.org/10.1109/jlt.2012.2189096
RICHARDSON D J , FINI J M , NELSON L E . Space-division multiplexing in optical fibres [J]. Nature Photonics , 2013 , 7 ( 5 ): 354 - 362 . doi: 10.1038/nphoton.2013.94 http://dx.doi.org/10.1038/nphoton.2013.94
SAKAMOTO T , SAITOH K , HANZAWA N , et al . Crosstalk suppressed hole-assisted 6-core fiber with cladding diameter of 125 μm [C]. 39th European Conference and Exhibition on Optical Communication (ECOC 2013 ). London. IET , 2013: 1 - 3 . doi: 10.1049/cp.2013.1274 http://dx.doi.org/10.1049/cp.2013.1274
XIE X Q , TU J J , ZHOU X , et al . Design and optimization of 32-core rod/trench assisted square-lattice structured single-mode multi-core fiber [J]. Optics Express , 2017 , 25 ( 5 ): 5119 - 5132 . doi: 10.1364/oe.25.005119 http://dx.doi.org/10.1364/oe.25.005119
XIE Y H , PEI L , SUN J B , et al . Optimal design of a bend-insensitive heterogeneous MCF with differential inner-cladding structure and identical cores [J]. Optical Fiber Technology , 2019 , 53 : 102001 . doi: 10.1016/j.yofte.2019.102001 http://dx.doi.org/10.1016/j.yofte.2019.102001
SHAHEEN S , GRIS-SÁNCHEZ I , GASULLA I . True-time delay line based on dispersion-flattened 19-core photonic crystal fiber [J]. Journal of Lightwave Technology , 2020 , 38 ( 22 ): 6237 - 6246 . doi: 10.1109/jlt.2020.3011548 http://dx.doi.org/10.1109/jlt.2020.3011548
RUSSELL P . Photonic crystal fibers [J]. Science , 2003 , 299 ( 5605 ): 358 - 362 . doi: 10.1126/science.1079280 http://dx.doi.org/10.1126/science.1079280
SHEN L P , HUANG W P , JIAN S S . Design of photonic crystal fibers for dispersion-related applications [J]. Journal of Lightwave Technology , 2003 , 21 ( 7 ): 1644 - 1651 . doi: 10.1109/jlt.2003.814397 http://dx.doi.org/10.1109/jlt.2003.814397
ZHANG Y J , YANG S G , XIE S Z , et al . Dispersion-compensating photonic crystal fibers with special characteristics [J]. Microwave and Optical Technology Letters , 2008 , 50 ( 4 ): 1073 - 1078 . doi: 10.1002/mop.23306 http://dx.doi.org/10.1002/mop.23306
ZHAO X T . Characteristics of a large negative dispersion and low confinement losses PCF [J]. Semiconductor Optoelectronics , 2008 , 29 ( 5 ): 741 - 744 .
奚小明 , 陈子伦 , 刘诗尧 , 等 . 光子晶体光纤与普通光纤的耦合熔接 [J]. 激光技术 , 2011 ( 2 ): 202 - 205 . doi: 10.3969/j.issn.1001-3806.2011.02.017 http://dx.doi.org/10.3969/j.issn.1001-3806.2011.02.017
XI X M , CHEN Z L , LIU SH Y , et al . Coupling and fusion splicing of photonic crystal fibers with conventional fibers [J]. Laser Technology , 2011 ( 2 ): 202 - 205 . (in Chinese) . doi: 10.3969/j.issn.1001-3806.2011.02.017 http://dx.doi.org/10.3969/j.issn.1001-3806.2011.02.017
XIAO L M , DEMOKAN M S , JIN W , et al . Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect [J]. Journal of Lightwave Technology , 2007 , 25 ( 11 ): 3563 - 3574 . doi: 10.1109/jlt.2007.907787 http://dx.doi.org/10.1109/jlt.2007.907787
XI X M , CHEN Z L , SUN G L , et al . Fusion splicing of small solid core photonic crystal fibers with conventional fibers based on controlled hole collapse [J]. Chinese Journal of Lasers , 2011 , 38 ( 1 ): 0106004 . doi: 10.3788/cjl201138.0106004 http://dx.doi.org/10.3788/cjl201138.0106004
侯尚林 , 韩佳巍 . 一种新的低非线性宽带色散补偿微结构光纤的设计 [J]. 发光学报 , 2009 , 30 ( 6 ): 882 - 887 .
HOU SH L , HAN J W . Design of a novel microstructure fiber with broadband dispersion compensation and low nonlinearity [J]. Chinese Journal of Luminescence , 2009 , 30 ( 6 ): 882 - 887 . (in Chinese)
PRABHAKAR G , PEER A , RASTOGI V , et al . Large-effective-area dispersion-compensating fiber design based on dual-core microstructure [J]. Applied Optics , 2013 , 52 ( 19 ): 4505 . doi: 10.1364/ao.52.004505 http://dx.doi.org/10.1364/ao.52.004505
ABDELAAL S M H , YOUNIS B M , OBAYYA S S A , et al . Highly negative dispersion dual-core liquid crystal photonic crystal fiber [J]. Optical Fiber Technology , 2020 , 60 : 102330 . doi: 10.1016/j.yofte.2020.102330 http://dx.doi.org/10.1016/j.yofte.2020.102330
MALITSON I H . Interspecimen comparison of the refractive index of fused silica [J]. Journal of the Optical Society of America , 1965 , 55 ( 10 ): 1205 . doi: 10.1364/josa.55.001205 http://dx.doi.org/10.1364/josa.55.001205
CIDDOR P E . Refractive index of air: new equations for the visible and near infrared [J]. Applied Optics , 1996 , 35 ( 9 ): 1566 - 1573 . doi: 10.1364/ao.35.001566 http://dx.doi.org/10.1364/ao.35.001566
DE SHENG Z , YI D X , ZHANG W G , et al . Studies on the dispersion in photonic crystal fiber using the step effective index model [J]. Acta Physica Sinica , 2005 , 54 ( 3 ): 1235 . doi: 10.7498/aps.54.1235 http://dx.doi.org/10.7498/aps.54.1235
CHEN N , ZHANG X D , NIE F K , et al . Dispersion-compensating photonic crystal fiber with wavelength tunability based on a modified dual concentric core structure [J]. Journal of Modern Optics , 2018 , 65 ( 12 ): 1459 - 1465 . doi: 10.1080/09500340.2018.1454526 http://dx.doi.org/10.1080/09500340.2018.1454526
YE F H , TU J J , SAITOH K , et al . Simple analytical expression for crosstalk estimation in homogeneous trench-assisted multi-core fibers [J]. Optics Express , 2014 , 22 ( 19 ): 23007 - 23018 . doi: 10.1364/oe.22.023007 http://dx.doi.org/10.1364/oe.22.023007
SAITOH K , MATSUO S . Multicore fiber technology [J]. Journal of Lightwave Technology , 2016 , 34 ( 1 ): 55 - 66 . doi: 10.1109/jlt.2015.2466444 http://dx.doi.org/10.1109/jlt.2015.2466444
XIE Y H , PEI L , ZHENG J J , et al . Impact analysis of a dense hole-assisted structure on crosstalk and bending loss in homogeneous few-mode multi-core fibers [J]. Optics Express , 2020 , 28 ( 16 ): 23806 - 23819 . doi: 10.1364/oe.400461 http://dx.doi.org/10.1364/oe.400461
LI M J , CHEN X , LIU A P , et al . Limit of effective area for single-mode operation in step-index large mode area laser fibers [J]. Journal of Lightwave Technology , 2009 , 27 ( 15 ): 3010 - 3016 . doi: 10.1109/jlt.2009.2020682 http://dx.doi.org/10.1109/jlt.2009.2020682
NAGANO K , KAWAKAMI S , NISHIDA S . Change of the refractive index in an optical fiber due to external forces [J]. Applied Optics , 1978 , 17 ( 13 ): 2080 - 2085 . doi: 10.1364/ao.17.002080 http://dx.doi.org/10.1364/ao.17.002080
IMAMURA K , TSUCHIDA Y , MUKASA K , et al . Investigation on multi-core fibers with large Aeff and low micro bending loss [J]. Optics Express , 2011 , 19 ( 11 ): 10595 - 10603 . doi: 10.1364/oe.19.010595 http://dx.doi.org/10.1364/oe.19.010595
ISHIDA I , AKAMATSU T , WANG Z , et al . Possibility of stack and draw process as fabrication technology for multi-core fiber [C]. 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC). Anaheim , CA, USA . IEEE , 2013 : 1 - 3 .
闫志伟 . 利用堆积法制备光子晶体光纤的工艺研究 [D]. 秦皇岛 : 燕山大学 , 2010 .
YAN Z W . The Research on Technology of Fabricating Photonic Crystal Fibers using the Accumulation [D]. Qinhuangdao : Yanshan University , 2010 . (in Chinese)
ZHANG P Q , ZHANG J , YANG P L , et al . Fabrication of chalcogenide glass photonic crystal fibers with mechanical drilling [J]. Optical Fiber Technology , 2015 , 26 : 176 - 179 . doi: 10.1016/j.yofte.2015.09.002 http://dx.doi.org/10.1016/j.yofte.2015.09.002
0
浏览量
729
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构